
PalmPilotKiosk I:

Wireless Local Network for Palmtop Computers

Jan Beutel, Tobias Bösch
Electronics Laboratory, ETH Zürich

Phone: +41-1-632 51 44
FAX: +41-1-632 12 10

e-mail: jbeutel@ife.ee.ethz.ch

6th February 1998

2

Contents

Introduction vii

1: Overview on Mobile Computing 1
1.1 General Overview . 1
1.2 Known Solutions and Problems . 2

2: The USRobotics/3COM PalmPilot 5
2.1 Original PalmPilot . 5
2.2 Applications and Services available Today 7
2.3 The PalmPilot in the News . 8
2.4 Other PDA’s . 9

3: Transceiver Module Hardware 11
3.1 Overview of the Design Flow . 11
3.2 Functional Model . 13
3.3 Evaluation of the components . 14

3.3.1 UHF Transceiver . 15
3.3.2 Modem Chip . 18
3.3.3 Microcontroller . 20
3.3.4 Operational Amplifier . 24
3.3.5 DC/DC Converter . 25
3.3.6 RS232 Transceiver . 25
3.3.7 Other Devices . 27

3.4 Power Consumption and Frequency Modes 28
3.5 Schematic and PCB Design . 30

3.5.1 Schematic Libraries . 30
3.5.2 Schematic Editor . 30
3.5.3 PCB Libraries . 33
3.5.4 PCB Editor . 33

i

Contents

3.5.5 Router . 34
3.6 Assembly and Test . 34

4: Data Transmission 37
4.1 FX929B block formatting capabilities 37
4.2 The PIC’s function . 39
4.3 The PIC’s command interface . 40
4.4 Software implementation . 42
4.5 Interface to upper layer protocols . 42
4.6 Software issues . 42

5: Outlook 47

A: Appendix Hardware 49
A.1 Circuits . 50

A.1.1 Transceiver Module Prototype Schematic 50
A.1.2 Transceiver Module Prototype PCB 51
A.1.3 Transceiver Module Prototype PCB Top Layer 52
A.1.4 Transceiver Module Prototype PCB Bottom Layer 53
A.1.5 Transceiver Module Schematic 54
A.1.6 Transceiver Module Powersupply Schematic 55

A.2 Pin Assignments . 56
A.2.1 Transceiver Module Prototype Testpins 56

B: Appendix Software 57
B.1 Software . 58

B.1.1 Pilot_serial.c . 58
B.1.2 Myfirst.c . 61
B.1.3 Pilot.asm . 66
B.1.4 Palm_dos.asm . 71
B.1.5 Palm_tx.asm . 79
B.1.6 Palm_rx.asm . 84
B.1.7 Palm.h . 87
B.1.8 Module.h . 89
B.1.9 palm_com.h . 90
B.1.10 palm_err.h . 91
B.1.11 mod_com.c . 91

ii

Tables

3-1 Pin assignment and functions on the BIM UHF module. 17
3-2 Radio modem chips supplied by CML Microcicuits Ltd. 18
3-3 Evaluation of the powerdissipation of components and frequency modes. 29

4-1 Module Commands as they are defined in palm_com.h 41

5-1 Cost for a single transceiver module. 47

iii

Tables

iv

Figures

0-1 PalmKiosk . viii
0-2 Blockdiagramm des drahtlosen Netzadapters. ix

1-1 The major trends in computing. 1

2-1 The U.S. Robotics/3Com PalmPilot in original size. 6
2-2 The HotSync cradle that connects the PalmPilot to your PC or work-

station. 7
2-3 The one-stroke-per-letter handwriting recognition system “Graffiti” of

the Palmpilot uses this alphabet. 7
2-4 The Sharp Phonizer, a neat integration of PDA and handy. 9

3-1 Blockdiagram of the identical transceivers on the basestation and mo-
bile unit. 13

3-2 The interaction of modem chip and UHF module. 14
3-3 The BIM UHF Transceiver module. 15
3-4 The BIM UHF Transceiver module mechanical dimensions and pinout. 16
3-5 The BIM UHF Transceiver module block diagram. 16
3-6 The FX929B Modem Data Pump block diagram. 19
3-7 The generation of the RRC Filtered 4-Level Tx Baseband Signal on

the FX929B. 20
3-8 The interconnection of modem chip and microcontroller. 21
3-9 The PIC 16C6x family features. 22
3-10 The PIC 16C67 block diagram. 23
3-11 The amplifier in the Tx data path. 24
3-12 The implementation of the TX data amplifier. 24
3-13 The LTC 1514-33 DC/DC converter on the left and the LTC 1516

DC/DC converter on the right. 25
3-14 The MAX 3223 RS 232 serial transceiver. 26
3-15 The serial interface of the former PalmPilot that features GP Input

and GP Output on pins 3,4 and 10. 27

v

Figures

3-16 The LTC1385 serial transceiver that is now used in the PalmPilot that
connects the GP Output to pins 3. 28

3-17 The transceiver schematic. 31
3-18 The powersupply with both battery and external supply possibilities. . 32

4-1 The over air data frame format of the FX929B modem chip 38
4-2 Host to PIC to Host communication . 40
4-3 Result codes as they are defined in palm_err.h 42
4-4 The test of the PalmPilots output registers with myfirst.c. 43
4-5 The test and configuration of the PalmPilots serial output with serial.c. 44
4-6 A look into the opened PalmPilot with the new GP output connected

to an LTC1385. 44

A-1 Transceiver Module Prototype Schematic. 50
A-2 Transceiver Module Prototype PCB. 51
A-3 Transceiver Module Prototype PCB Top Layer. 52
A-4 Transceiver Module Prototype PCB Bottom Layer. 53
A-5 Transceiver Module Schematic. 54
A-6 Transceiver Module Powersupply Schematic. 55
A-7 Transceiver Module Prototype Testpins. 56

vi

Zurich¨
Technische Hochschule
Eidgenossische¨

Swiss Federal Institute of Technology Zurich
Politecnico federale di Zurigo
Ecole polytechnique federale de Zurich´ ´

Departement Elektrotechnik Institut für Elektronik

Wintersemester 1997/98

SEMESTERARBEIT

für
Jan Beutel und Tobias Bösch

Betreuer: Rolf Sommerhalder, ETZ H60.1
Stellvertreter: Thomas Sailer, ETZ H60.1

Ausgabe: 21.Oktober 1997
Abgabe: 6. Februar 1998

PalmKiosk I: Drahtloses lokales Netzwerk für
Palmtop Computer

Einleitung
Wieso geht man heute noch am Kiosk vorbei und kauft sich Tageszeitungen, die
gedruckt, transportiert und entsorgt werden müssen? Portable Computer wie der
PalmPilot (Figur 0-1) könnten doch interessierende Nachrichten bei “elektronischen
Kiosken” im Vorbeigehen herunterladen und bezahlen!

Portable, digitale Assistenten (PDA) sind batteriebetriebene Computer, die typis-
cherweise kleiner, leichter und billiger sind als Laptops. Herkömmliche PDA wur-
den bisher als Ersatz fuer Agenda mit Terminkaldender, Alarmfunktionen sowie
als Adressdatenbank und Telefonbuch verwendet. Neuere PDA (PalmPilot von
U.S. Robotics/3Com, Newton von Apple) können auch benutzt werden, um E-Mail
abzurufen und zu beantworten, oder um Zeitungen (“News”) in elektronischer Form
zu lesen. Auf Informationsservern stellen Agenten und Filter die Zeitungen nach
Interessenprofil des Benutzers individuell aus verschiedensten Quellen zusammen
(Newsserver, WWW-Seiten, Presseagenturen, Börsen, usw.).

Drahtlose Datenübertragung zu niedrigen Kosten wird von den modernen
Computer- und Kommunikations-“Nomaden” gefordert, um volle Bewegungsfreiheit
zu erreichen. In Räumen kann dies mittels Infrarotübertragung (IrDA) mit hoher

Introduction

PalmKiosk
Wireless LAN

IFE/ETHZ

rs@ife.ee.ethz.ch

Figure 0-1
Erweiterung des PalmPilot PDA
mit drahtloser
Datenkommunikation.

Bandbreite und dafür kurzer Reichweite geschehen. Für Verbindungen innerhalb
von Gebäuden bieten sich Standards wie z.B. Digital European Cordless Telephone
(DECT) an. Paketorientierte Datenfunknetze wie Mobitex [8] und verbindungsori-
entierte Mobiltelefonsysteme wie GSM können grössere Distanzen überbrücken.
Mobilsatellitensysteme wie Inmarsat ermöglichen bereits heute weltweite Daten-
verbindungen mittels portabler Bodenstationen.

Für Experimente auf einem Hochschulcampus bietet sich von von den Kosten, der
Reichweite und der Machbarkeit her gesehen das “Industrial, Scientific and Med-
ical” (ISM) Band bei 430 MHz an. Werden homologierte Sende-/Empfängermodule
eingesetzt, deren abgestrahlte Sendeleistung gewisse Grenzwerte nicht überschre-
itet, so dürfen diese Funknetze lizenzfrei betrieben werden. Diese Module sind
preiswert (<100 SFr. pro Modul) und lassen Datenverbindungen über einige hun-
dert Meter zu.

In dieser Arbeit soll aus Standardbausteinen eine Erweiterung zum PalmPilot en-
twickelt werden, welche drahtlose Verbindungen von mehreren PDA mit einem
Server, oder von mehreren PDA untereinander, ermöglicht (Figur 0-2). Diese Er-
weiterung soll weniger als 200 SFr. kosten und mit zwei AAA-Batterien auskom-
men. Sie soll an der seriellen Schnittstelle des PalmPilot angeschlossen werden,
evtentuell auch an einer seriellen Schnittstelle von anderen Rechnern. Stellen Sie
die notwendige Systemsoftware für eine fehlerfreie Datenübertragung bereit, die
den zur Verfügung stehenden Übertragungskanal optimal benutzt. Der Zugriff auf
diesen einzigen Kanal soll für alle Benutzer fair geregelt werden. Weil der Kanal
im ISM-Band liegt und von fremden Systemen teilweise gleichzeitig belegt werden
kann, müssen die eingesetzten Protokolle fehlertolerant und robust ausgelegt wer-
den.

In Kooperation mit der parallel laufenden Semesterarbeit “PalmKiosk II” sollen
die Hardwareerweiterung, die erforderlichen Softwareschnittstellen sowie die

viii

Introduction

Controller

Micro- Modem
Datapump
CML FX909/919

UHF Transceiver

Radiometrix BiM-43

(433 MHz ISM)

Power
Supply
(2 AAA Cells)

PTT

Audio

PalmKiosk Wireless LAN Extension

DragonBall
Motorola

MC68328

RS-232

PalmPilot

3.3V 5V

Data

Ctrl/
Addr

Figure 0-2
Blockdiagramm des drahtlosen Netzadapters.

Datenlink- und Netzwerkprotokolle spezifiziert und implementiert werden.

Aufgabenstellung
1. Erstellen Sie einen Projektplan und legen Sie Meilensteine fest [1]. Erar-

beiten Sie in Absprache mit dem Parallelprojekt “PalmKiosk II” und dem Be-
treuer ein Pflichtenheft. Es ist vorgesehen, dass Standardbausteine wie z.B.
das Sende-/Empfangsmodul [14] sowie ein stromsparender Modemchip [16, 15]
eingesetzt werden. Diese Bausteine lösen bereits wesentliche Teilprobleme wie
Synchronisation, Kapselung in Pakete (Framing) sowie Fehlerdetektion und -
korrektur.

2. Führen Sie eine Literaturrecherche zu Themen wie Wireless LAN, Daten-
linkprotokolle, oder Kanalzugriff (Medium Access Control) durch. Aus-
gangspunkte bilden z.B. die Arbeiten [17, 3, 5, 7, 6, 4]. Suchen Sie nach
neueren Publikationen.

3. Erstellen Sie nach dem Literaturstudium in Absprache mit dem Parallel-
projekt “PalmKiosk II” Varianten des Erweiterungsmoduls für die drahtlose
Datenübertragung. Wägen Sie die Vor- und Nachteile der verschiedenen Vari-
anten gegeneinander ab, unter Berücksichtigung von Kriterien wie: Stromver-
brauch, Preis, Auswirkungen auf die Systemkomplexität und Einfachheit der
Software.

4. Stellen Sie zwei oder drei Prototypen des Erweiterungsmodules her und über-
prüfen Sie deren Funktionstüchtigkeit durch Messung von Bit Error Raten in
Abhängigkeit zum Signal-Rauschabstand.

5. Arbeiten Sie sich in die Softwareentwicklungsumgebung des PalmPilot ein
[13, 12, 11, 10]. Implementieren Sie Systemsoftwareroutinen (Driver) zum
Ansteuern Ihres Erweiterungsmodules durch die serielle Schnittstelle des
PalmPilot und evtl. einer Sun Workstation als Gateway zum Internet.

ix

Introduction

6. Entwerfen und implementieren Sie ein einfaches Kanalzugriffsverfahren sowie
einfache und robuste Datenlink- und Netzwerkprotokolle. Demonstrieren Sie
deren Funktionstüchtigkeit anhand einer kleinen Anwendung wie z.B. Daten-
transfer zwischen zwei PalmPilot.

7. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer kleinen
Demonstration, sowie mit einem Schlussbericht.

Durchführung der Semesterarbeit
Allgemeines

� Der Verlauf des Projektes “Semesterarbeit” soll laufend anhand des Projekt-
planes und der Meilensteine evaluiert werden. Unvorhergesehene Probleme
beim eingeschlagenen Lösungsweg können Änderungen am Projektplan er-
forderlich machen. Diese sollen dokumentiert werden.

� Sie verfügen über einen PC mit Protel oder eine Sun Workstation mit Cadence
für die Schemaerfassung und das Printlayout. Die Softwareentwicklung für
den PalmPilot sowie für den eventuell erforderlichen Mikrocontroller kann auf
PC oder Sun erfolgen.

� Stellen Sie Ihr Projekt zu Beginn der Semesterarbeit in einem Kurzvortrag
(am 7. November 1997, 5 Minuten) vor und präsentieren Sie die erarbeiteten
Resultate am Schluss im Rahmen des Institutskolloquiums Ende Semester.

� Besprechen Sie Ihr Vorgehen regelmässig mit Ihrem Betreuer.

Abgabe
� Geben Sie zwei unterschriebene Exemplare des Berichtes spätestens am 6.

Februar 1998 dem betreuenden Assistenten oder seinen Stellvertreter ab.
Diese Aufgabenstellung soll vorne im Bericht eingefügt werden (vgl. [1],
Kap. 1.7 Bericht).

� Räumen Sie Ihre Rechnerkonten soweit auf, dass nur noch die relevanten
Source- und Objectfiles, Konfigurationsfiles, benötigten Directorystrukturen
usw. bestehen bleiben. Eine spätere Anschlussarbeit soll auf dem hinterlasse-
nen Stand aufbauen können.

x

Bibliography

[1] M.Thaler. Semester- und Diplomarbeiten am Institut für Elektronik.
IFE/ETHZ, 10/95, Oktober 1995.

[2] D. Brown. Techniques for Privacy and Authentication in Personal Communi-
cation Systems. IEEE Personal Communications, pages 6-10, August 1995.

[3] K.-C. Chen. Medium Access Control of Wireless LANs for Mobile Computing.
IEEE Network, pages 50-63, Sept./Oct. 1994.

[4] V. N. Padmanabhan. Design and Evaluation of a Reliable Link-Layer Proto-
col. Class Project, Spring 1996.

[5] G. H. Forman and J. Zahorjan. The Challenges of Mobile Computing. IEEE
Computer, pages 38-47, April 1994.

[6] M.T. Le and S. Seshan and F. Burghardt and J. Rabaey. Software Architecture
of the Infopad System. Proceedings of Mobidata Workshop on Mobile and
Wireless Information Systems, New Brunswick, NJ, Nov. 1994.

[7] Tomasz Imielinski and Henry F. Korth. Mobile Computing. Kluwer, 1996.

[8] A. K. Salkintzis and C. Chamzas. Mobile Packet Data Technology: An Insight
into MOBITEX Architecture. IEEE Personal Communications, pages 10-18,
Feb. 1997.

[9] M. Sirbu and J. D. Tygar. NetBill: An Internet Commerce System Optimized
for Network-Delivered Services. IEEE Personal Communications, pages 34-
39, Aug. 1995.

[10] Motorola Inc. Integrated Portable System Processor – DragonBall MC68328.
1995. http://www.mot.com/SPS/ADC/pps/prod/3XX/mc68328.html

[11] Metrowerks Inc. CodeWarrior C-Crosscompiler Development Tools.
http://www.metrowerks.com/.

[12] D. Massena. Pilot Software Development WWW-Pages.
http://www.massena.com/darrin/pilot/.

xi

Introduction

[13] Albert. Pilot-UNIX mailing list archive. http://www.acm.rpi.edu/˜albert/pilot/.

[14] Radiometrix Ltd. Low Power UHF Data Transceiver Module BiM-433-F.
Sept. 1995.

[15] Consumer Microcircuits Ltd. (CML Semiconductors). Wireless Modem Data
Pump FX909A. March 1996.

[16] Consumer Microcircuits Ltd. (CML Semiconductors). 4-Level FSK Modem
Data Pump FX919A. March 1996.

[17] H. Balakrishnan and V. N. Padmanabhan and S. Seshan and R. Katz. A
Comparison of Mechanisms for Improving TCP Performance over Wireless
Links. SIGCOMM Conference, ACM, Aug. 1996.

xii

Introduction

Motivation
The initial motivation to embark on this project was that among the vast amount
of projects offered for the winter term 97/98 at ETH Zurich it had a clear goal and
resembled much of a complete project. We liked that we would have to work in many
different fields, offering us to learn about the entire design process to develop and
implement a complete product and not only the parts of one. This would offer us to
practice those skills that lectures cannot offer.

Thanks
At this point we would like to thank Rolf Sommerhalder, Thomas Sailer as well
as the rest of the staff at the ETH Electronics Laboratory for their great attitude
and help with this project. It was a pleasure to find such an open and inspiring
atmosphere with you all.

In addition to that we would like to thank Mr. Rütimann of Mero, Mr. Sanchez of
Maxim Germany, the companies Eurodis and Elbatex for their kind contribution of
IC samples for our prototype boards.

Andi Karrer was especially helpful with his hints on LATEX that were necessary to
complete this document.

Zurich, February 6th, 1998

Jan Beutel

Tobias Bösch

xiii

Introduction

xiv

1
Overview on Mobile Computing

1.1 General Overview
In our modern, mobile society the unrestricted use of communication and computing
devices is becoming a part of daily life. Not only researchers and technicians make
use of the advantages of new devices and functionalities, every person encounters
numerous applications and equipment in everyday life even though he or she might

Figure 1-1
The major trends in computing.

1

Chapter 1: Overview on Mobile Computing

not at all be aware of them being an electronics or even computing device.

From this non-awareness of the user of the actual technology we can learn that
people using modern devices must not be skilled or even specially trained to use
them but should be able to do so intuitively, on their own and quickly. More and more
devices and services are being integrated into a whole or are being made remotely
accessible from common interfaces.

In the near future tens of millions of people will carry portable or laptop comput-
ers with wireless communication connections to fixed networks and to other mobile
computers (Figure 1-1). These environment demand on an entire new class of appli-
cations that focus on unrestricted mobility, access and portability.

As more and more people are getting used to mobile telephones, pagers, labtop and
palmtop computers with network connection and other remote services, it is now
time for the evaluation of these systems. One of the factors users of mobile tele-
phones point out to be by far the most important for the use and sale of the equip-
ment is the time available for use with a single battery package, or in other words
the energy consumption of the device. Size, ergonomical features, functionality, ser-
vices included or even the electromagnetic radiation from the antenna are only mi-
nor factors. This has been observed since the first introduction of such devices and
it is feasible to say, that in the near future users will not notice when they had to
service, i.e. recharge their mobile equipment for the last time.

1.2 Known Solutions and Problems
Although there are numerous products on the market the past years have shown,
that the strategy and functionality of mobile devices is not yet decided upon. With an
ever advancing technology and recent leaps in the development of highly integrated
and energy consumption aware products we will see many new innovative solutions
on the market in the near future.

Large research groups have established and an enormous effort is beeing shown
towards the development of new strategies, technologies and systems. To mention
only a few the BAYOU project and PARCTab at Xerox PARC, Daedalus/BARWAN,
Glomop and InfoPad at the University of California at Berkeley, the Rover project
at the Massachusetts Institute of Technology and the Project Mandarin are given
here. Characteristic for all these efforts is, that they are all approaching the topic
of mobility and distributed services and systems in a very general way and are still
far from giving a solution. There is still a lot of conceptual work to do in this field.

Today mobile telephones are widely spread. The GSM standard allows to transfer
data at a rate up to 9600 Byte/sec and many people are using PC card modems and
a labtop computer to have their remote office at hand. Others are using smaller
devices, socalled Personal Digital Assistants or PDAs in connection with serial or
infrared links to host computers in the office, or a GSM. Recent followups of the
GSM like Motorolas Iridium satelite network can offer an evergrowing mobility with

2

1.2. Known Solutions and Problems

a coverage of almost the whole planet, but no increase in bandwidth with only 2400
bits/s for datatransfers or facsimilies. A new revision of GSM is reported to allow
200kB/s data transfers.

At UC Berkeleys CS department a vertical overlay network. the BARWAN, was
implemented using satelite communication, wide and local area packet radio net-
works as well as infrared communications for in room situations. A proxy service
that would adapt the requested data to the available client and link bandwidth was
connected with all services on this network.

3

Chapter 1: Overview on Mobile Computing

4

2
The USRobotics/3COM PalmPilot

2.1 Original PalmPilot
The PalmPilot (figure 2-1) from U.S. Robotics is one of the first truly pocket-size
personal organizers designed specifically to extend and enhance the capabilities of
your desktop computer and computer network. It has an ample microprocessor and
display to let the user use applications alike those that one is used to have on a
desktop PC or workstation.

Running a highly efficient operating system on a microprocessor dedicated and op-
timized for hand-held devices, the PalmPilot gives you instant access to powerful
applications – no need to wait for the system to boot or for an application to load
into memory. And with a PalmPilot, your organizer and your personal computer are
always in sync with each other. The PalmPilot’s HotSync (Figure 2-2) technology
automatically synchronizes information with a Windows, Macintosh PC or worksta-
tion at the touch of a button. You can even synchronize your PalmPilot and desktop
PC from a remote location, using a dial-up link or a wide area network connection.

This close coupling of a hand-held organizer and a desktop PC allows the two devices
to work in tandem, with the PC taking on the heavy processing and storage chores
while the PalmPilot does the light and quick tasks when away from the office. The
PalmPilot is the most compact, low-cost, easy-to-use yet powerfull product on the
market today.

The software on the PalmPilot can exchange information seamlessly with popular
personal information management (PIM) applications, including Microsoft’s Sched-
ule+, Lotus’ Organizer, and Starfish Software’s Sidekick. Optional software also lets
the user connect to the enterprise network, send and receive e-mail, and synchronize
data remotely.

5

Chapter 2: The USRobotics/3COM PalmPilot

The PalmPilot features an intuitive graphical interface and a highly accurate text
input system called Graffiti (Figure 2-3). Using the PalmPilot’s stylus, you can enter
alphanumeric information with a slightly adapted handwriting that one can learn
in about 15 minutes and thus take notes at a rate of 30 words per minute. Or you
can use the PalmPilot’s on-screen keyboard or the keyboard on your PC to enter
data.

In addition, PalmPilot supports standard development tools that make it easy to
add custom applications to suit your organization’s information infrastructure and
unique work environment. Development tools are available for Unix (gcc) PC and

Figure 2-1
The U.S. Robotics/3Com PalmPilot in original size.

6

2.2. Applications and Services available Today

Macintosh (Code-Warrior) as well as an on screen emulation with debugging envi-
ronment. With the device’s flexible design, you can expand memory and upgrade
functionality easily.

2.2 Applications and Services available Today
There are large numbers of applications available for the PalmPilot today. Among
the most common are personal diaries and calendars, address-books and notebook
functions. For communication purposes there are various email, usenet news and
messaging applications available. A html-browser that uses a “Transsend” proxy on
the host system serving the PalmPilot was developed by a group at the UC Berkeley.
The application Wingman is available for download and receives rerendered 2-bit
graphic images and html code that was scanned by the transsend proxy to fit the
capabilities of the application and userinterface. Palmscape 4.1 and Handweb 1.0
are other html browsers currently available for the PalmPilot.

Abundant amounts of shareware software is available in various archives like

Figure 2-2
The HotSync cradle that connects the PalmPilot to your PC or workstation.

Figure 2-3
The one-stroke-per-letter handwriting recognition system “Graffiti” of the Palmpilot uses this
alphabet.

7

Chapter 2: The USRobotics/3COM PalmPilot

http://www.pilotzone.com or http://www.pilotgear.com and numerous private
pages and with powerfull software development tools available the commercial soft-
wareproducers are closing in on the market.

An emulation of the PalmPilot is available under the name “Copilot” for INIX, PC
and Macintosh computers along with gcc compiler and debugger, specially for the
Motorola Dragon Ball processor in the PalmPilot. Metrowerks Codewarrior was de-
veloped for PalmPilot together with US Robotics and is available for about $600 for
Windows PC and Macintosh computers.

2.3 The PalmPilot in the News
On November 10, 1997 renowned Fortune Magazine [21] wrote:

The Consumerization of Computing Devices
The fastest-selling personal computer device of all time is . . . the PalmPilot.
3Com announced that in November, 1997 it will have sold more than a million
of the hand-held devices since April 1996. That’s a faster adoption rate than
for the first PC, the first Macintosh, or the first laptops. The 5.7-ounce device
(which costs $250 to $370) translates handwriting to text; stores your calen-
dar, address book, and other data; and synchronizes with your PC. The Pilot
is so hot that Cross sells special PalmPilot stylus-pens, and leathermaker
Dooney & Bourke offers tony $50 PalmPilot cases.

The PalmPilot’s success is the most visible sign of a new market for spe-
cialized microprocessor-powered devices. Such gadgets are less replacements
of the PC than complements. Says Charlie Federman: “As computing power
moved from the mainframe onto the desktop, so we’ll see more computing
power in our hands than on our desktops.”

The shift is under way. According to Deutsche Morgan Grenfell, the vast ma-
jority – 3.6 billion – of microprocessors sold last year were modest ones known
as “embedded processors.” They are the brains in phones, cars, washing ma-
chines, and an estimated 14.5 million Tamagotchi virtual pets. That’s sim-
plicity for you: Kids who can’t read a manual learn to feed and walk a digital
dog.

Up next: devices connected wirelessly to networks. AT&T just announced a
cell phone that can fish your E-mail off your PC. Chris Shipley, editor of the
trend-watching DemoLetter in San Francisco, expects to see home Internet
servers that wirelessly control a range of appliances, allowing you to, for in-
stance, regulate your alarm system from your browser at work.

Shipley calls Hewlett-Packard, which has built hand-held devices for years,
“a sleeper that will win big.” Sun Microsystems’ Diba subsidiary designs
Java-based networked gadgets. Microsoft is also a player, with software for

8

2.4. Other PDA’s

set-top boxes and hand-held devices. Another winner may be Wind River Sys-
tems of Alameda, Cal., the top vendor of operating systems and programming
tools for embedded processors. Sales for the year ended in January grew 45%,
to $64 million. Even the Mars Pathfinder is guided by Wind River software.

– D.K.

2.4 Other PDA’s
The Newton Message Pad from Apple is the oldest of the familiy of PDAs with hand-
writing recognition and sells successfully since about 3 years. It’s first versions had
problems with the limited computational power and memory. Due to this the hand-
writing recognition was not very good. This has changed now and the Newton now
comes with fast memory and expansion capabilities, software and an adaptable and
teachable handwriting recognition system embedded in the operating system.

The Nokia Communicator was the first device on the market that was PDA and
mobile telephone integrated into the same device, but due to the high price and the
fact that it is more a phone with integrated calendar and notebook function than
the other way around.

AT&T Handy and Philips are coming on the market with similar devices. Casio, HP
and Psion are known to have calculator type organizers in their catalogs, but are
now developing devices with touch screen as well.

The Sharp Phonizer is a brandnew integration of mobile phone and PDA and it
looks as if this time it is an aproach more towards a PDA with voice function and
not another Nokia Communicator.

Figure 2-4
The Sharp Phonizer, a neat integration of PDA and handy.

Also Sharp and Texas Instruments (TI) set out recently to produce copycat units to
the PalmPilot. Sharp’s SE-500 and TI’s Avigo are currently available for $299 each.
Like the PalmPilot, these are pen-based products targeting mobile professionals

9

Chapter 2: The USRobotics/3COM PalmPilot

who need access to PIM information as well as the ability to synchronize to a PC.
The most notable difference from the PalmPilot is the method of data input. The
PalmPilot uses Graffiti software to enable handwriting recognition; the SE-500 and
the Avigo use onscreen keyboards. The Avigo also uses a text-input system from
Tegic Communications called Innovative T9.

The SE-500 and the Avigo share dimensions and weight, but are slightly larger and
heavier than the Pilot. Both new units have a larger display with a 240x160 reso-
lution; the Pilot has a 160x160. This shows a clear trend towards higher resolution
and possibly color displays in the near future.

10

3
Transceiver Module Hardware

This chapter should give an overview on how the hardware of the transceiver module
was designed and the components were selected. It was the aim to minimize the
design in regards to size, chip count, power consumption and cost.

3.1 Overview of the Design Flow
In order to give a brief overview of the design flow of the transceiver module a lineup
of all steps taken is given here:

1. Functional design

� Block diagram

� Review of functions and programming libraries available

� Study of PalmPilot

2. Selection of components

� Functionality of single components

� Interaction with other components

� Powerconsumption

� Availability

� Single or dual voltage

� Price/samples

� Order

3. Schematic of functional elements

� Check with available libraries

11

Chapter 3: Transceiver Module Hardware

� Development of library elements

� Placement of parts

� Functional interactions

� Logic level conversions (3-5 Volts)

� Analog amplification

� Netlist checks

� Assign footpronts and dimensions for each component

4. Schematic of test circuits

� Definition of testbusses

� Selection of testconnections and methods

� Implementation in schematic

5. Component placement on PCB board

� Definition of PCB board

� Definition of layers, vias, pads and other feature sizes

� Check with available libraries

� Development of appropriate footprints, pads and library elements

� Placement according to functional interactions

6. Routing

� Testroutes with autorouter

� Testroutes by hand

� Replacement of parts according to density plot

� Routing with priorities

� Routing with different feature sizes

� Netlist compare

� Last changes by hand

7. In house made PCB

� Postscript file

� Conversion to EPS file

� Processing of PCB board

� Drilling

8. Step by step assembly and test

12

Figure 3-1
Blockdiagram of the identical transceivers on the basestation and mobile unit.

The transceiver systems are made up of identical interfaces that are attached to the
serial ports of either the PalmPilot or a networked workstation (Figure 3-1) that
serves as a basestation for the mobile units. Except for the casing and powersupply
these interfaces are made up of the same components and have the same function-
ality. It was a major goal to develop these transceivers from standard components
for under 200sFr each.

13

Figure 3-2
The interaction of modem chip and UHF module.

A UHF Transceiver (Figure 3-3) module that handles audio in- and output signals
is attached to a modem chip that modulates and demodulates the signal, codes- and
decodes the digital information and serves as primary errorcorrection device. The
modem chip uses an eight-bit set of four registers for data and control functions as
well as a few more control lines and is specially dedicated towards wireless applica-
tions. Together with the control lines of the UHF Transceiver these are attached to a
microcontroller that works as a more or less “intelligent” serial to parallel interface
and buffer. This microcontroller does all the controlfunctions necessary to send and
receive bytes via the transmition line modem chip, UHF transceiver and controls
the powerdown of the UHF transceiver and shutdown or sleep mode of the other
devices (Figure 3-2). A dual powersupply that generates 3.3V and 5V from two AAA
batteries, accumulators or external powerjack rounds up the functional blocks of
the interface. On the first evaluation board prototype a number of testing jumpers,
LEDs and connectors are included.

3.3 Evaluation of the components
The selection of the components was focused to standard components with low power
consumption and possibly shutdown or sleep modes to preserve energy on the hand-
held devices. We tried to minimize package size as well, in order to achieve a compact
design in highly integrated surface mount technology.

14

3.3. Evaluation of the components

The availability of small amounts of components as well as the possibility to obtain
samples free of charge was taken into account. We encountered numerous difficul-
ties with the distributors around and sometimes had to go to foreign distributors or
their european representatives in order to have the components available in such
short time.

3.3.1 UHF Transceiver
We selected the BIM-433-F UHF [34] transceiver module (Figure 3-3) from Ra-
diometrix Ltd. since it offered all the necessary functionality and would be avail-
able as an European version (433Mhz) as well as an UK version (418Mhz) at a
competitive pricing. This band is known as the ISM-Band (Industrial, Scientific
and Medical Band) that is located at 433,050-434,790 Mhz and is used for house-
hold, wireless communication, alarms, controls and indoor microphone applications
throughout Europe. In most European countries the frequency of 433,92Mhz�0; 2%
is being used at transmitting powers up to 10mW complying to Europes ETS 300-
220 standard.

Figure 3-3
The BIM UHF Transceiver module.

There are various chipsets for wireless datacommunication for this band on the
market, such as chips form vendors such as RF Micro Devices or Germany based
Municom. Many Vendors offer ready made receivers or transmitters that are low
power and very small package size but the gap from these single building blocks to
full scale wireless modems is very large. These ready made modems sell for approx-
imately $500-1000 and are very bulky and require quite some energy supply.

Radiometrix offers a so called Radio Packet Controller that operates on an 4 Bit data
bus with hardware handshake. It is made up of a BIM UHF module and a small
microcontroller as well as a few other components. In order to use this module it
would have been necessary to use another microcontroller to communicate with the
PalmPilots serial interface. This would have been an unnecesary amount of chips. It
was close at hand to use the BIM UHF module and attach a custom microcontroller

15

Chapter 3: Transceiver Module Hardware

Figure 3-4
The BIM UHF Transceiver module mechanical dimensions and pinout.

Figure 3-5
The BIM UHF Transceiver module block diagram.

with a serial interface included.

The BIM UHF module sells at $80 for single units and at $48 for amounts of 100+.

16

3.3. Evaluation of the components

Pin Name Description
pin 1 & 3 RF GND These pins should be connected to the ground plane against

which the integral antenna radiates. Internally connected to
pins 9,10,18.

pin 2 Antenna RF input / RF output for connection to an integral antenna. It
has a nominal RF impedance of 50W and is capacitively isolated
from the internal circuit.

pin 9, 10, 18 Vss 0 volt connection for the modulation and supply.

pin 11 CD Carrier Detect - When the receiver is enabled, a low indicates
a signal above the detection threshold is being received. The
output is high impedance (50kOhm) and should only be used
to drive a CMOS logic input.

pin 12 RXD This digital output from the internal data slicer is a squared
version of the signal on pin 13 (AF). This signal is used to drive
external digital decoders, it is true data (i.e. as fed to the trans-
mitters data input). The 10kOhm output impedance is suitable
for driving CMOS logic.
Note: this output contain squared noise when no signal is being
received.

pin 13 RX Audio This is the FM demodulator output. It has a standing DC bias of
approximately 1.5 Volts and may be used to drive analogue data
decoders such as modems or DTMF decoders. Output impedance
is 10KOhm. Signal level approx. 0.4V pk to pk. We recommend
this signal always be available on a convenient test point for
diagnostic purposes.
Note: unlike the RXD output which is always true data, this
output is true data on the BiM-418 and inverted on the BiM-
433.

pin 14 TXD Should be driven directly by a CMOS logic device running on the
same supply voltage as the module. Analogue drive may be used
but must not drive this input above Vcc or below 0V. This input
should be held at <0.5V when the TX is not selected to prevent
current leak (see block diagram).

pin 15 TX select Active low transmit / receive selects with 10kOhm internal.

pin 16 RX select pull-ups. They may be driven by open collector or CMOS logic.

Pin 15 TX Pin 16 RX Function

1 1 power down (<1�A)
1 0 receiver enabled
0 1 transmitter enabled
0 0 self test loop back

Note: loop test is at reduced TX
power.

pin 17 Vcc positive supply, supply voltages from +4.5V to +5.5V may be
used. Reverse polarity will destroy the module. Supply is inter-
nally decoupled. Maximum ripple content 50mV pk to pk.

Table 3-1: Pin assignment and functions on the BIM UHF module.

17

Chapter 3: Transceiver Module Hardware

Part Description
FX429A FFSK Modem
FX469 1200/2400/4800 Baud FFSK Modem
FX529 FFSK Modem
FX579 Half Duplex GMSK Modem
FX589 GMSK Modem
FX809 FFSK Modem
FX909A GMSK Packet Data Modem (mobitex)
FX919A 4-Level FSK Packet Data Modem (old)
FX919B 4-Level FSK Packet Data Modem (new)
FX929B 4-Level FSK Packet Data Modem (RD-LAP)
FX949 Formatted CDPD Modem

Table 3-2: Radio modem chips supplied by CML Microcicuits Ltd.

It features an integrated low power UHF FM transmitter and matching superhet
receiver together with data recovery and TX/RX change over circuits and a 1mS
power up for power saving (figure 3-5). It’s only 23x33mm in size (figure 3-4) and
uses a 5 volt power supply with a typical supply current of 12mA in transmit and
receive mode. Table 3-1 describes the pins of the module and their function.

3.3.2 Modem Chip
The modem chip was supposed to be used for the packetizing, sending a destination
id and error correction of the data on the wireless link. There are various products
on the market today that encompass these features in a single package. CML offers
a wide variety of radio data modems for different protocols and modulations schown
in table 3-2.

The following items were taken into consideration to find the appropriate modem
chip:

� Low power consumption

� Possibility to modify protocol

� Error correction and packeting

� Possibility for interrupt and external wakeup

� Low power consumption

� Adaptable clocking and sleep modes

� Dedicated to wireless communication

� Small SMD package

� Price

18

3.3. Evaluation of the components

� Availability

The FX929B 4-Level FSK Modem Data Pump encompasses the following features:

� 4-Level FSK Modulation

� Half-Duplex, 4.8kb/s to 19.2kb/s Operation

� Full Data Packet Framing

� RD-LAP Compatible

� Flexible Operating Modes

� Host Processor Interface

� Low Power 3.3 to 5.5 Volt Operation

� Powersave Option

� 24-Pin Small-Form Package Operation

Figure 3-6
The FX929B Modem Data Pump block diagram.

The FX929B is a CMOS integrated circuit that contains all of the baseband signal
processing and Medium Access Control (MAC) protocol functions required for a high
performance 4-level FSK Wireless Packet Data Modem (figure 3-6).

19

Chapter 3: Transceiver Module Hardware

Figure 3-7
The generation of the RRC Filtered 4-Level Tx Baseband Signal on the FX929B.

It interfaces with the modem host processor (figure 3-8) and the radio modula-
tion/demodulation circuits to deliver reliable two-way transfer of the application
data over the wireless link. The FX929B assembles application data received from
the processor, adds forward error correction (FEC) and error detection (CRC) infor-
mation and interleaves the result for burst-error protection.

After adding symbol and frame sync codewords, it converts the packet into filtered
4-level analog signals for modulating the radio transmitter (figure 3-6). In receive
mode, the FX929B performs the reverse function using the analog signals from the
receiver discriminator. After error correction and removal of the packet overhead,
the recovered application data is supplied to the processor. Any residual uncorrected
errors in the data will be flagged. A readout of the SNR value during receipt of a
packet is also provided.

The FX929B uses data block sizes and FEC/CRC algorithms compatible with the
RD-LAP over-air standard (figure 4-1). The format used is suitable for other private
applications which require the high-speed transfer of data over narrow-band wire-
less links. The device is programmable to operate at most standard bit-rates from a
wide choice of Xtal/clock frequencies.

3.3.3 Microcontroller
Among the vast variety of available microcontrollers the following specifications had
to be met:

� Low power consumption

� 3 Volt operation

� 25-30 I/O lines directly accessible

� Serial I/O available

� Possibility for interrupts and external wakeup

� Low power consumption

� Adaptable clocking and sleep modes

20

3.3. Evaluation of the components

Figure 3-8
The interconnection of modem chip and microcontroller.

� On-chip RAM and ROM

� On-chip EPROM or EEPROM for development purposes

� Small SMD package

� Easy in-circuit programming

� Availability

� Price

Motorolas 68HC11 and 68HC12 [17], Intel, National Semiconductor, Thompson, Hi-
tachi, Scenix SXC 28 [39] and the Microchip PIC [29, 29] series were evaluated. It
was soon clear that the amount of microcontrollers with up to 30 directly accessible
I/O lines was very limited and that the constaints given by the power consumption
and low voltage operation would soon limit the available candidates.

Microchip is a leading supplier of 8-bit microcontrollers, with one of the broadest
product offerings. Products range from 8-pin 12 bit instruction word to 68-pin 16-bit
instruction word devices. Fast operation, low power and low cost combine to make
the Microchip PICmicro family one of the most popular product lines in the world.

The Scenix SCX 28 is a 8-bit in-system programmable microcontroller with 2048x12-
bits EE/Flash memory and an operating frequency up to 50 Mhz. It has only 20 I/O
pins but features a sophisticated development environment with socalled Virtual
PeripheralsTM , a set of ready made software modules. Due to the amount of I/O pins
needed and the comparably high energy consumtion we decided not to use this chip
but to concentrate on the PIC family instead. Moreover a performance of 50 MIPS
seemed a little too much for our relatively small application.

21

Chapter 3: Transceiver Module Hardware

The Microchip PICmicro 16C6xx familiy (table 3-9) features 22 or 33 I/O pins as well
as USART, SCI or I2C serial I/O, up to 368 Bytes of on-chip RAM, timers as well as
an in circuit programming interface.

Figure 3-9
The PIC 16C6x family features.

The PIC16C65/65A/R65 devices have 192 bytes of RAM, while the PIC16C67 has
368 bytes. All four devices have 33 I/O pins. In addition, several peripheral features
are available, including: three timer/counters, two Capture/Compare/PWM modules
and two serial ports. The Synchronous Serial Port can be configured as either a 3-
wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I2C)
bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is
also known as a Serial Communications Interface or SCI. An 8-bit Parallel Slave
Port is also provided (figure 3-10).

The PIC16C6X device family has special features to reduce external components,
thus reducing cost, enhancing system reliability and reducing power consumption.

There are four oscillator options, of which the single pin RC oscillator provides a
low-cost solution, the LP oscillator minimizes power consumption, XT is a standard
crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers
a power saving mode. The user can wake the chip from SLEEP through several
external and internal interrupts, and resets. A highly reliable Watchdog Timer with
it’s own on-chip RC oscillator provides protection against software lock-up.

A UV erasable CERDIP packaged version is ideal for code development, while the
cost-effective One-Time-Programmable (OTP) version is suitable for production in
any volume.

The MPLAB development environment is available for free download from Mi-
crochips server and includes a full programming, testing and debugging environ-

22

3.3. Evaluation of the components

Figure 3-10
The PIC 16C67 block diagram.

ment.

Since there were problems obtaining the designated PIC 16C67 we decided to use
the PIC 16C77 wich is almost the same chip. The only difference is, that there is an
additional AD converter on the chip as well.

23

Chapter 3: Transceiver Module Hardware

Figure 3-11
The amplifier in the Tx data path.

3.3.4 Operational Amplifier
In order to drive the designated BIM UHF module with the full transmitting power
an audio input signal of 4 Volt peak to peak would be necessary. Since the FX929B
modem chip can only supply a signal of approximately 1 Volt peak to peak it is
necessary to include an amplification in the transmitting signal path (figure 3-11.

This amplification was implemented (figure 3-12) with a MAX4331 Rail-to-Rail Op-
erational Amplifier that features a very low shutdown current and has ample am-
plification power for this application.

100nF 25k

82k

470pF 390k

100k

200k

300k

+5V

+5V

TXD on
BIM UHFTXOP

on FX929B

+
-

Figure 3-12
The implementation of the TX data amplifier.

24

3.3. Evaluation of the components

Figure 3-13
The LTC 1514-33 DC/DC converter on the left and the LTC 1516 DC/DC converter on the
right.

3.3.5 DC/DC Converter
The UHF transceiver needs a 5 Volt supply. All other components can be driven with
5 Volts too, but the calculation of the powerdissipation (see chapter 3.4) shows that
a split powersupply with 3.3 Volts and 5 Volts derived from two AAA battery cells
consume less energy.

Thus a dual powersupply was evaluated and the following points were used as
guidelines:

� 3.3 and 5 Volts output

� Input range from 2 to 5 Volts for 2 cell AAA-size accumulator use

� High efficiency

� Low sleep current

� Few external components

� No external inductors

� External shutdown

The two Linear Technology DC/DC converters selected (figure 3-13) would allow an
input voltage range from 2-5 Volts thus allowing the whole device to be driven by
two AAA accumulators of 1.2 Volts or batteries of 1.5 Volts each or a variable DC
power supply on the basestation. There are no external inductors needed for these
DC/DC convertors and a number of pincompatible devices exist.

3.3.6 RS232 Transceiver
In order to operate the PIC microcontroller on the RS232 Interface it is necessary
to transform the signal level from 0-3 Volts to the �3-25 Volt level specified for RS
232C by EIA. It is important to note thet these transceivers invert the signals. A
directly accessed signal would thus be inverted from the RS 232. There are various

25

Chapter 3: Transceiver Module Hardware

Figure 3-14
The MAX 3223 RS 232 serial transceiver.

devices for this purpose on the market. We concentrated on the minimum device
that would allow to use 4 lines of the RS 232 interface, 2 in each direction and that
would be dedicated to use in portable equipment. The following items were outlined
to be necessary:

� 3 Volt operation

� True RS 232 conversion for 4 lines I/O

� Wakeup on communication request via RS232 lines

� Low power consumption

� Low sleep current

� Few external components

� No external Inductors

� Small SMD packet

The MAX 3223 +3V to +5.5V RS 232 transceiver is a new component that derives
from the well established MAX 232 transceiver but features autoshutdown and 1�A
sleep current. This solution was preferred to a simpler one with only pull-up re-
sistors and capacitors on the CTS, RxD TxD and RTS signals, even though it is
necessary to have more components in the complete design.

26

3.3. Evaluation of the components

Figure 3-15
The serial interface of the former PalmPilot that features GP Input and GP Output on pins
3,4 and 10.

3.3.7 Other Devices
For the three control lines (Tx select, Rx select and carrier detect) of the BIM UHF
module attached to the microcontroller a level conversion from 3.3 Volt to 5 Volt
would be necessary. For the first evaluation prototype this feature was included on
the print, but the zener diodes were not fitted because this board operates on 5 Volt
for the reprogrammable PIC microcontroller.

Since the USRobotics PalmPilot was reengineered shortly it is no longer easily pos-
sible to use the extra lines in the serial interface (General Purpose IO) for external
output; for example to power down the 3.3V powersupply and thus the microcon-
troller. In the first versions of the PalmPilot these lines were attached to the micro-
processors normal IO ports directly, now only the General Purpose Input and the
Hotsync (Pins 3 and 4 on the PalmPilots connector as seen from the bottom) are still
connected.

27

Chapter 3: Transceiver Module Hardware

Figure 3-16
The LTC1385 serial transceiver that is now used in the PalmPilot that connects the GP
Output to pins 3.

What was formerly the General Purpose Output (GP Output) is now connected to
the LTC1385 Transceiver (Pin 3 V+ output) on the PalmPilots serial interface and
serves as Data Terminal Ready Signal on the serial transmition line. This line is
high (6 Volt) with the serial transceiver enabled and floating at about 3,3 Volt when
disabled since it is attched to the LTC1385. Therefore it was no longer possible to
use this line directly on the mobile unit to control the 3,3V power on the transceiver
board. We implemented a simple voltage devider with two resistors that made it
possible to switch the 3,3V power on and off from the PalmPilot.

This makes it possible to shut the whole transceiver down except for the shutdown
current of the two DC/DC convertors and the leakage current of the two resistors on
the GP output line.

3.4 Power Consumption and Frequency Modes
It is important to evaluate the power consumption of the whole interface and to
decide wether to run the device in a single voltage or dual voltage mode since it is
a portable and battery operated device. Evaluations of the market for mobile tele-
phones have shown that the users decision to buy a device is influenced most by the
available time of operation, i.e. the battery capacity and energyconsumption.

The energyconsumption was calculated for the most important parts on the
transceiver, namely the BIM UHF module, modem chip and PIC microcontroller.
On the four right-hand coloumns of table 3-3 the consumption in 5 Volt single volt-
age operation is given on the left and the consumption of 3.3 and 5 Volt dual voltage
operation is given on the right. Since the BIM UHF module is restricted to 5 Volt
operation the powerdissipation of this component cannot be altered. A significant
reduction by 67% can be achieved by operating modem chip and microcontroller in
3.3 Volts for these two devices only. Since the 5 Volt supply can be shut down seper-

28

Table 3-3: Evaluation of the powerdissipation of components and frequency modes.

ately without influencing the operation of the other devices a significant reduction
in energyconsumption can be achieved by turning the BIM transceiver and its pow-
ersupply off, whenever there is no data to transmit on the mobile device.

The bottom section in figure 3-3 shows the amount of power lost due to conversion
and efficiency of different DC/DC converters in the dark gray fields. Its results are
that the amount of energy consumed for conversion and a second DC/DC convertor
is less than the energy consumed in single voltage 5 Volt operation.

A projected powerconsumption of about 80mW in full operation and less than 0.1mA
in sleep mode with both the 3.3 Volt and 5 Volt supply switched off would yield an
operation time sufficient for most users and applications with a set of two AAA
accumulators of about 170mAh each. One strategy to save energy would be to have
the mobile unit check with the basestation only every once in a while and not to
be in receiving mode all the time. There are numerous others to be still evaluated
together with the PalmPilot.

29

Chapter 3: Transceiver Module Hardware

3.5 Schematic and PCB Design
The Transceiver Prototype Board was designed using Protels EDA Client 3.5 with
Advanced Schematic, Advanced PCB and Advanced Route. The first contact with the
software tools seemed very easy and straightforward but with the project advancing,
numerous problems came up. The complexity of the design process made it clear
that the right order of the steps taken is of the greatest importance. It was very
troublesome to find out about how to do and when to do (or not to do) on the fly,
i.e. whenever the specific step would follow. In this learning process a lot of steps
had to be redone and it is of vital importance to save the project at different levels
as often as possible and to keep strictly to naming conventions, i.e. not to give the
same name to different items or labels.

3.5.1 Schematic Libraries
The definition of a new schematic library element was necessary because not all
parts used were available in the standard libraries. Here it was necessary to define
the amount and type of interconnections and logical layout of the part. A pinout
of the library element should be assigned according to functional aspects and not
according to the physical pinout. The names given to pins here resemble the function
on the component itself.

It is easy to reorder, change, add or delete parts and pins in the schematic li-
brary during the design process. It is possible to update the placed elements in the
schematic editor with a single command later on.

3.5.2 Schematic Editor
3.5.2.1 General Information

In the schematic editor sheetsize and and dependencies of the different sheets con-
tained in the project should be defined first.

The components are placed on the sheet in functional blocks, it is important not to
squezze them together to much but to leave ample free space inbetween. Different
sheets can be linked together by assigning ports and net connections.

If connections cannot be placed without crossing other connections they can be made
with ports that assign a certain net to a pin but do not have a visible connection.
The ground and power nets were distributed in this way.

The footprints can then be assigned directly in the schematic editor.

3.5.2.2 Transceiver Prototype Schematics

For test purposes a large amount of testconnectors was implemented in the
schematic, both for logic analyzer with high density connectors and normal testpins.

The PIC 16C77 was included with both the SMD TQFP 44 pin package and the
CERDIP 40 pin package on a socket. Only one of them would be used at a time but

30

Figure 3-17
The transceiver schematic.

The final schematic is included in figure 3-17. Most significant is the lack of all
testconnectors and nets and the lack of the second PIC CERDIP package as well as

31

Figure 3-18
The powersupply with both battery and external supply possibilities.

The power supply is shown in figure 3-18. It can be driven either with two AAA size
accumulators or batteries or a 2-5 Volt external supply. For the mobile unit the exter-
nal power supply connector should be omitted, for the basestation the batteryclips.

For shutdown of the 3.3 Volt DC powersupply with the GP output a voltage divider
according to figure 3-16 should be included. The current on the voltage divider can-
not be zero with this ’trick’ but it is very easy to implement. Maybe it would be
worthwile to use a different method or circuitry in order to be able to switch on
the 3.3 Volt supply on a mobile transceiver unit. The only reason why 3Com/US
Robotics changed the configuration on the PalmPilots connector must be to prohibit
others from developing usefull devices to go along with the PalmPilot.

When wires are collected into busses a netlabel should be given to all connections

32

3.5. Schematic and PCB Design

where the signal is attached. These labels must have different names for every net
in the whole circuit and are not characteristic to one bus only. If these netlabels are
ommited or mixed the whole circuit design is worthless.

3.5.3 PCB Libraries
In order to make a PCB board all devices used in the schematic must be assigned
to a footprint resembling the physical dimensions of the component. For those not
contained in the Protel libraries custom footprints had to be developed according to
the drawings given in the datasheets.

It is important to assign a geometrical origin to each component, because otherwise
they may be placed out of the physical area of the PCB board. There it is not possible
to select or move components.

A second important fact is to not assign the same pad and number twice or with the
same name. only one footprint can be assigned to each component, so components in
parallel like the two types of testconnectors and the two PIC devices on the prototype
board must be seperate parts.

It is important to check the orientation of the components.

3.5.4 PCB Editor
With the PCB Editor the PCB board is created. Dimensions of the board, all hole
and via sizes, maximum and minimum clearances and widths should be known in
advance and be selected according to the specific process that is used to make the
PCB board. There is a wizard included in the program that helps a lot with this
setup, a change lateron is possible as well as to adapt several other variables to the
process used, but in order to change them later it is exteremely important to know
your way through the vast amount of configuration possibilities and parameters. Not
all parameters are found where one would think at first contact with the software,
and there are more parameters that one would think available too. Consulting an
exoert helps. A lot of help can be found on Protels Webpage http://www.protel.com
or the Swiss distributor IDK-Elektronik Software http://www.idk.ch.

The schematic is included in form of a netist. All components and all nets are de-
scribed therein. A visual crosscheck should be performed with the netlist, since it is
not visible in the schematic editor, which pins and wires are directly connected and
which are not.

The autoplacement option is not very practical for first time users, so a placement of
components should be done by hand. It is important to place and orient components
so that the connections would be the most direct. In this prototype board it was
very difficult to find appropriate positions for the two PIC microcontroller sockets,
since the pinout on the two components did not resemble each other. The amount
of testcircuitry and connecters used up so much space that it was hardly possible to
stay on a single euro-sized board only.

33

Chapter 3: Transceiver Module Hardware

3.5.5 Router
The first trial runs were done by hand, but since it is impossible to protect already
routed circuits from being torn up by the Protel router this was nothing more than
mere exercise.

The autorouter runs as a seperate program. Priorities can be given to certain nets,
but apart from some parameters to be adjusted prior to routing nothing can be in-
fluenced on this system. This is an advantage as well as a disadvantage, since a
lack of flexibility in the configuration possibilities of the routing software may voids
all prior efforts to place components ’intelligently’. Several trial runs should be per-
formed and components replaced according to the density plots given until the de-
sign can be completely routed. It is also helpfull to slowly adjust the width of the
tracks starting from a very small value to the desired width.

On boards with two layers components can be placed on both sides as well. It is
desirable to start with all components on one side and to slowly move some to the
other side during the different routing runs. The whole job is very dependand on
ones experience and luck too.

3.6 Assembly and Test
The PCB board was made at the in-house lab and holes were drilled according to
the diameters given.

All vias were soldered with copper wire through the holes and a visual check was
performed along with a check against short circuits on the most important nets. The
processing of the PCB seemed to be fairly good, but the soldering of the vias was a
very timeconsuming and elaborate work.

The powersupply was fitted first. The test of this part of the device was very straight-
forward. Only one power connector had to be fitted under the PCB, because it was
oriented the wrong way on the layout. The external power for the CERDIP PIC is
now fitte dunder the board, the external power for the whole circuit on top.

The socket for the PIC microcontroller as well as some other sockets and connectors
where the pins were used as vias had to be fitted along with the crystal oscillator
and some capacitors and resistors for the trial of the PIC. Before the microcontroller
would be engaged for the first time it was necessary to check all pins for the correct
voltage, and it appeared that there were numerous spots, were a pad was soldered
to a track, because there was no layer of solder mask available.

The first trial of the PIC was successfull so the next step was a serial connection to a
SUN workstattion. The necessary circuits and the MAX3223 transceiver were fitted
as well and the first communication was implemented.

In order to test the communication of two BIM UHF modules it was necessary to
set up a second board. This took some time, because there were numerous badly
soldered connections on vias and some pads had again soldered to the neighboring

34

3.6. Assembly and Test

tracks. When the second board was up and running we used one BIM UHF module
as receiver with a loudspeaker attached and the other as transmitter with a walk-
mann transmitting an analog audio signal from one to the other. The PIC microcon-
troller wouls then allow to switch the transmitter and receiver on or off respectedly
as well as the onboard 5 Volt power supply.

Next was to fit the modem chip with its oscillator and capacitors and to try to send a
full packet. This was implemented and different software versions were tested (see
chapter 4.6).

It showed that it would be necessary to amplify the transmitting signal to reach a
maximum output on the BIM UHF transmitter. To adapt our circuitry to amplify
the signal without disturbing it an external setup of the amplifier was done first
(see figure 3-12).

The prototype board was not yet fitted completely, due to the fact that problems
occurred with the receiving and transmitting signals.

35

Chapter 3: Transceiver Module Hardware

36

4
Data Transmission

It was one of our goals to provide a platform for testing different medium layer ac-
cess schemes. Therefore our module has to provide some sort of flexibility. Flexibility
in two ways:

� it should be easily possible to implement new access schemes

� the hardware and especially the modem chip should offer enough general
frame and block formatting commands to experiment with

The second can be satisfied by selecting the ’right’ modem chip, the first, however, is
not easy to achieve using a OTP microcontroller. Let’s first have a look at the modem
chip we choose and its formatting capabilities.

4.1 FX929B block formatting capabilities
The FX929B’s main block types as seen in figure 4-1 are in general used to compose
frames conforming to the formatting rules used in RD-LAP systems. A RD-LAP
frame consists of a frame preamble (comprising a 24-symbol frame synchronization
pattern and station id block) followed by a header block, one or more intermediate
blocks and a last block. Channel status (S) symbols are included at regular intervals.
The first frame of any transmission is preceded by a symbol synchronization pattern.

Proprietary systems like ours do not have to use the RD-LAP format, but are free
to build up their own alternative frame formats, suited best for the particular needs
and given S/N ratio. The block structures provided by the FX929B may be used or
not.

The FX929B offers the following main block types:

� Station ID

37

Chapter 4: Data Transmission

Figure 4-1
The over air data frame format of the FX929B modem chip .

� Header Block

� Intermediate Block

� Last Block

38

4.2. The PIC’s function

It performs all of the block formatting and de-formatting, the binary data trans-
ferred between the modem and the microcontroller being that enclosed by the fat
dashed rectangles in figure 4-1.

The Header Block is self-contained in that it includes its own checksum (CRC1),
and would normally carry information such as the address of the calling and called
parties, the number of following blocks in the frame (if any) and miscellaneous in-
formation.

The Intermediate Block(s) contain only data, the checksum at the end of the Last
Block (CRC2) also checks the data in any preceding Intermediate Blocks. Check-
sumerrors are flagged in the status register.

The Transmit Station ID (TSID), Transmit Header Block (THB), Transmit Interme-
diate Block (TIB) and Transmit Last Block (TLB) tasks are used to transmit these
main blocks. Read Station ID (RSID), Read Header Block (RHB), Read Intermediate
or Last Block (RILB) are the corresponding block receiving tasks.

Among these the FX929B offers four tasks for transmitting four and 24 symbols at a
time: Transmit 24 Symbols (T24S), Transmit 4 Symbols (T4S) and Read 24 Symbols
(R24S), Read 4 Symbols (R4S) respectively.

The Search for Frame Preamble (SFP) task can be used to search the incoming
symbols for a valid frame synchronization pattern. This task also reads the Station
ID following the frame synchronization pattern.

4.2 The PIC’s function
What is the PIC microcontroller’s job in the game? In a first version the microcon-
troller was thought only to receive one byte of data from the serial interface and
transmit it to the selected modem register. This solution has the big advantage of
being flexible. Changes to the protocol can be implemented by just modifying and
recompiling the C source code for the SUN or the Pilot. Unfortunately this solution
didn’t meet the timing requirements of the modem chip. This became obvious very
late, when we had already programmed a lot of C code on the SUN. The problems
were not the transmission time over the serial link or the processing time in the
PIC, as one might expect. In fact the SUN needed to long to send and afterwards
receive one byte via ioctl-calls .

In the second version we put more intelligence into the PIC. It now receives whole
blocks via the serial link and writes them to the modem registers. It too does check
the answers from the modem and reports them to the SUN or the Pilot, if necessary.
In this version it is possible to send frames without getting in conflict with the
timing specification of the modemchip. Receiving however is not yet possible. This
version moves these parts of the program to the PIC, which do not need changing.
The others among the retransmitbuffers rest on the SUN or the Pilot, i.e. if a block
needs to be retransmitted it has to be loaded to the PIC again. The decision which

39

Chapter 4: Data Transmission

Command Byte

read_status, read_quality, read_data, poll_cd

Data Byte

Command:

Answer Result Byte

receiver_on, receiver_off, transceiver_on, transceiver_off, transceiver_test, power_on, power_off, LED_1_toggle, LED_2_toggle,
transmit_frame, transmit_header, transmit_inter, transmit_last, receive_frame, receive_header, receive_inter, receive_last

Command Byte

Result Byte

Command:

Answer

write_command, write_mode, write_control, write_data

Command Byte

Result Byte

Command:

Answer

set_staid, set_header, set_inter, set_last

Data Byte

Command Byte

Result Byte

Command:

Answer

Data Byte 0 Data Byte n

Result Byte

get_staid, get_header, get_inter, get_last

Command Byte

Result Byte

Command:

Answer Data Byte 0 Data Byte n

Figure 4-2
Host to PIC to Host communication

blocks need to be sent or retransmitted is made in the SUN or the Pilot and not in
the PIC.

4.3 The PIC’s command interface
The PIC understands commands for receiving and transmitting blocks, directly ac-
cessing the modem registers and controlling the rest of the board (see Table 4-1).

Commands are one byte long and are followed by none, one or more bytes (up to
twelve) of data. The PIC answers with one byte followed by none, one or more data
bytes and if more then one data byte had to be received from the Pilot, it appends
another result byte. Errors are indicated by the result byte. If an error occurs the
PIC does not try to recover, but just waits for a new command without completing
the one, that failed. Refer to figure 4-2 and figure 4-3

40

4.3. The PIC’s command interface

Module Command Description
read_status

read_quality

read_data

Read the appropriate modem register. Result is
one byte indicating success or error and one byte
containing the registers content.

poll_cd Poll the carrier detect line. Result is one byte in-
dicating success or error and one byte containing
no_carrier_detect or carrier_detect .

receiver_on

receiver_off

transceiver_on

transceiver_off

transceiver_test

Force the BiM module in the appropriate state.
Result is one byte indicating success or error.

power_on

power_off

Turn on or off the 5V power supply. Result is one
byte indicating success or error.

LED_1_toggle

LED_2_toggle

LED it blink. Result is one byte indicating success
or error.

write_command

write_mode

write_control

write_data

Write the data byte following the command to the
appropriate modem register. Result is one byte in-
dicating success or error.

set_staid

set_header

set_inter

set_last

Write the data bytes following the command to
the internal buffer. Result is one byte indicating
success or error after receiving the command and
another byte indicating success or error after hav-
ing received all the data bytes. Always check the
first result byte before sending the data block.
The data block is 3 bytes long forset_staid ,
10 for set_header , 12 for set_inter and 8 for
set_last .

get_staid

get_header

get_inter

get_last

Read the appropriate internal buffer. Result is
one byte indicating success or error followed by
up to 12 data bytes.

transmit_frame Sends a frame structured like shown in figure 4-1.
transmit_header

transmit_inte

transmit_last

These are thougt to send this block types. They
have not been implemented yet.

receive_frame

receive_header

receive_inter

receive_last

These have not been implemented yet.

Table 4-1: Module Commands as they are defined in palm_com.h

41

Chapter 4: Data Transmission

A mirrored command byte means, everything went okay

unknown_cmd

overrun_error

frame_error

error_indication

Command Byte

The PIC does not understand this command

The PIC's receive buffer is more then full, try adding
pauses after twho bytes sent

A framing error has occured

Another error happend

checksum_error While receiving a header or last block a checksum
error was flagged by the modem chip

Figure 4-3
Result codes as they are defined in palm_err.h

4.4 Software implementation
The first version was mainly written in C running, but not working (see above), on a
SUN SparcStation. Only small parts had to be written in assembler. The second ver-
sion is hardly written in C, but in assembler. We used the GNU C compiler, which is
available for SUN workstations and PalmPilot handhelds. Pilot programs were sim-
ulated using xcopilot. The PIC assembler is integrated into MPLAB, a MS Windows
based development environment consisting of an editor, an assembler, a debugger, a
simulator and optionally an emulator and a programmer. We were able to simulate
some basic features in the simulator, but most things could only be tested by trying
them out in the real environment, which can be very time consuming.

4.5 Interface to upper layer protocols
We defined an interface for communicating with PalmKiosk II [14] protocols and
applications, but didn’t have the time to implement it. These functions only exist as
small prototypes.

4.6 Software issues
We were most troubled by the following things:

� using the GPIO pins on the Pilot

� getting the serial link to work

� talking to the modem chip fast enough

42

4.6. Software issues

Figure 4-4
The test of the PalmPilots output registers with myfirst.c.

The first thing we wanted to do was turning off the 3.3V power converter via the
Pilot’s general purpose output pin. Therefor we had to figure out, how to change its
state. We checked the Motorola Dragon Ball manual [13] , and were pretty sure it
must be connected to pin 18 (RTCOUT/PG7). In order to change this pins state, we
had to set and clear some bits in some Dragon Ball registers. In a first approach we
did this with external assembler routines. This worked fine for changing the bits,
but the connector pin’s voltage did not change at all, instead the backlight turn on
and off. We decided to write a program for systematically checking the various out-
put registers (see myfirst.c , appendix B.1.2). If you plan to try it out make sure
you have got a recent backup at hand. This new program no longer uses external
assembler routines, but #defines using the volatile keyword. This is a very conve-
nient way to read and write registers, and doesn’t even need memory space (figure
4-4). After some probing, we were pretty sure that none of the Dragon Balls I/O pins
was connected to our GPIO pin. Rolf Sommerhalder decided it was time for some
surgery. He opened his Pilot and had a look inside. It turned out that USRobotics
had changed the RS232C transceiver. The GPIO pin was no longer connected to the
Dragon Ball’s pin 18, but to the RS232C transceivers mark voltage output. Looking
through the PalmOS’ include files revealed the same thing: the name of the connec-
tor pin has changed from GPIO to DTR in recent Pilot designs (see chapter 3.3.7 and
figure 4-6).

Next thing to do was getting the PIC to talk to our SUN. This is no big thing to
do, as Thomas Sailer assured us. All we had to do was to select the baudrate by
setting the correct prescale ratio in the Baudrate Generation Register (SPBRG) in
the PIC, and enabling the transmitter by clearing the TXEN bit in the transmit

43

Chapter 4: Data Transmission

Figure 4-5
The test and configuration of the PalmPilots serial output with serial.c.

Figure 4-6
A look into the opened PalmPilot with the new GP output connected to an LTC1385.

status and controll register (TXSTA). The manual said a prescale ratio of 22 would
be a good choice to get 9’600 bits/s, assuming you use a 3.579 MHz crystal to clock
the microcontroller. So we did, and when our PIC was trying to send some useful
information to the SUN, it received nothing but garbage. We had a look at the signals
on the serial interface and it turned out that the rectangles representing a single
bit were much to long for the selected baudrate. After playing around a while we
figured out that we had to use a prescale ratio of 16 instead of 22 for the baudrate
generation register in order to achieve 9’600 bits/s. We were quite surprised, when
we realized that the smaller prescaler values used to select higher baudrates didn’t
have to be adapted in the same way. After a closer examination of the ’problem’ and
the prescaler values we recognized that in fact 16 to the base sixteen is the same as
22 to the base ten. The PIC assembler was just not able to guess, that we wanted to
have 22 to the base ten and not the base sixteen as it wanted to have it. What we
learned: 22 doesn’t have to be twenty-two.

44

4.6. Software issues

On the Pilot we wrote a program to check out the different serial port settings.
Getting the Pilot to talk to minicom on the sun was a lot easier, than doing the same
with the PIC (see figure 4-5 and appendix B.1.1).

In our first version program we tried to write directly to the modem registers from
the SUN. It should take about 540 �s to write one byte and get another byte back
(at 38’400 bits/s, including PIC processing time). Our SUN functions (see appendix
B.1.11) needed a lot more time. We weren’t able to figure out where the time was
lost. Perhaps our program got to many signals from the operating system? We tried
to ignore all signals, but that didn’t help. Sending more then one byte at a time
was not possible, without ignoring all the result bytes. But without result bytes we
didn’t know what the PIC was doing. We decided to move more code to the PIC to
enable it to receive and buffer up to twelve bytes. That has the advantage that the
write system call has to be performed only once for twelve bytes of data, reducing
the time for transferring the bytes to the PIC from 120 ms to 10 ms. Implementing
the sending procedures directly in the PIC (see appendix B.1.3 and B.1.5) , we were
able to send the symbolsync pattern, then the framesync pattern and at the end
complete frames like they are shown in figure 4-1.

Receiving frames seemed to be more complex, then sending them. First we weren’t
able to recognize any of the sent symbols. After debugging the hardware a ’little’
bit the symbols looked like an eye pattern and the modemchip was able to distin-
guish between symbol-, frame-syncing and other symbols. We have not succeeded
in decoding any other symbols, yet. What we learned: always place crystals at the
PCB boards border (away from anything else, but the chip they are used for), make
connections as short as possible and use blocking capacitors wherever possible.

45

Chapter 4: Data Transmission

46

5
Outlook

Where to go on from here?

The work presented here shows, that it is possible to implement a relatively simple
wireless network interface for the PalmPilot. Standard and ready made components
were used to result in a cost efficient solution. The main components for a single
transceiver module sum up to 192,22 sFr as seen in figure 5-1 and this sum can be
lowered by about 40% when more modules are being produced.

It would be desirable to make a second PCB board with smaller track widths and
smaller vias and possibly an additional solder mask layer over the copper in order
to prevent the tracks from attaching to the soldered vias. Also the opamp circuits
are now off board and should be fitted directly.

We found it difficult to have both PIC footprints on the same board, because the
lengths of different nets would be very long and not transmitt the signal properly
anymore, i.e. clock for the PIC.

There are two main directions to follow on the side of the software. First further
work should be directed into developing a fair medium layer access control protocol.

Device Cost
BIM UHF 433 117.21 sFr
FX 929B 52.10 sFr
PIC 16C77 14.00 sFr
MAX 3223 4.75 sFr
LTC 1514 2.36 sFr
LTC 1516 1.80 sFr
Total 193.22 sFr

Table 5-1: Cost for a single transceiver module.

47

Chapter 5: Outlook

This includes a systematic investigation of the modem chips capabilities. Maybe a
EV9000 Evaluation Kit could be helpful here.

Second all the power saving functions should be tied together to one program to re-
ally save as much energy as possible. This includes using the FX929B’s psave-mode
and the PIC’s sleep function. The powerconsumption should be measured for the
various operating modes. The wakeup from the PalmPilot should be investigated
again.

Elaborate testing of the whole system in respect to transmittion power, quality and
bandwidth should be performed. For this purpose it would be necessary to attach
a transceiver module to a PalmPilot and to make it 3 Volt powered with an OTP
version of the PIC microcontroller.

48

A
Appendix Hardware

49

Figure A-1
Transceiver Module Prototype Schematic.

50

Figure A-2
Transceiver Module Prototype PCB.

51

Figure A-3
Transceiver Module Prototype PCB Top Layer.

52

Figure A-4
Transceiver Module Prototype PCB Bottom Layer.

53

Figure A-5
Transceiver Module Schematic.

54

Figure A-6
Transceiver Module Powersupply Schematic.

55

Figure A-7
Transceiver Module Prototype Testpins.

56

B
Appendix Software

57

Chapter B: Appendix Software

B.1 Software
B.1.1 Pilot_serial.c
A program to test the Pilot’s serial interface. Shows how to open the serial port on
the pilot. Have a look at the function to generate events at the end.

#include "Common.h"
#include "System/SysAll.h"
#include "UI/UIAll.h"

#include "pilot_serial.h"
#include "System/SerialMgr.h"

static int StartApplication(void);
static void EventLoop(void);
static void StopApplication(void);
static Boolean serialEvtHandler(EventPtr event);
static void GenEvent(enum events eType, Word controlID);

DWord PilotMain (Word cmd, Ptr cmdPBP, Word launchFlags)
{

int error;

if (cmd == sysAppLaunchCmdNormalLaunch) {
error = StartApplication();
if (error) {

return error;
}

EventLoop();
StopApplication();

}
return 0;

}

static int StartApplication (void)
{

FrmGotoForm(formID_serial);
}

static void EventLoop(void)
{

short err;
int formID;
FormPtr form;
EventType event;

do {
EvtGetEvent(&event, evtWaitForever);
if (! SysHandleEvent(&event)) {

if (! MenuHandleEvent((void *)0, &event, &err)) {
if (event.eType == frmLoadEvent) {

formID = event.data.frmLoad.formID;
form = FrmInitForm(formID);
FrmSetActiveForm(form);
switch (formID) {
case formID_serial:

FrmSetEventHandler(form, (FormEventHandlerPtr) serialEvtHandler);
break;

}

58

B.1. Software

}
}

}
FrmDispatchEvent(&event);

} while(event.eType != appStopEvent);
}

static Boolean serialEvtHandler(EventPtr event)
{

static UInt ser_refNum;
static ULong baud = 9600;
static Char msg1[6] = "test1";
static Char msg2[6] = "test2";
static Char msg3[6] = "custm";
static Char *msgP = msg1;
static SerSettingsType ser_settings;
ULong numBytes;
Char buffer[20];
FormPtr form;
Boolean handled = 0;
Err error;

switch (event->eType) {
case frmOpenEvent:

form = FrmGetActiveForm();
FrmDrawForm(form);

/***

error = SysLibFind("Serial Library", &ser_refNum);
error = SerOpen(ser_refNum, 0, 9600);
error = SerGetSettings(ser_refNum, &ser_settings);
ser_settings.flags |= (serSettingsFlagRTSAutoM | serSettingsFlagCTSAutoM);
error = SerSetSettings(ser_refNum, &ser_settings);

**/

handled = 1;
break;

case menuEvent:
switch (event->data.menu.itemID) {
case menuitemID_about:

FrmAlert(alertID_about);
break;

case menuitemID_quit:
GenEvent(appStopEvent, NULL_ID);
break;

}
handled = 1;
break;

case ctlSelectEvent:
switch (event->data.ctlSelect.controlID) {
case checkID_9600:

ser_settings.baudRate = 9600;
GenEvent(ctlSelectEvent, buttonID_settings);
break;

case checkID_19200:
ser_settings.baudRate = 19200;
GenEvent(ctlSelectEvent, buttonID_settings);
break;

case checkID_38400:
ser_settings.baudRate = 38400;

59

Chapter B: Appendix Software

GenEvent(ctlSelectEvent, buttonID_settings);
break;

case checkID_pat1:
msgP = msg1;
break;

case checkID_pat2:
msgP = msg2;
break;

case checkID_cust:
msgP = msg3;
break;

case checkID_rtscts:
ser_settings.flags &= ~serSettingsFlagXonXoffM;
ser_settings.flags |= (serSettingsFlagRTSAutoM | serSettingsFlagCTSAutoM);
GenEvent(ctlSelectEvent, buttonID_settings);
break;

case checkID_xonxoff:
ser_settings.flags &= ~(serSettingsFlagRTSAutoM | serSettingsFlagCTSAutoM);
ser_settings.flags |= serSettingsFlagXonXoffM;
GenEvent(ctlSelectEvent, buttonID_settings);
break;

case checkID_none:
ser_settings.flags &= ~(serSettingsFlagRTSAutoM | serSettingsFlagCTSAutoM);
ser_settings.flags &= ~serSettingsFlagXonXoffM;
GenEvent(ctlSelectEvent, buttonID_settings);
break;

case buttonID_send:
SerSend(ser_refNum, msgP, 6, &error);
break;

case buttonID_echo:
numBytes = 20;
error = SerReceiveWait(ser_refNum, numBytes, -1);
if (error == serErrLineErr) {

error = SerClearErr(ser_refNum);
}
else {

SerReceive(ser_refNum, &buffer, numBytes, 0, &error);
SerSend(ser_refNum, &buffer, numBytes, &error);

}
break;

case buttonID_settings:
error = SerSetSettings(ser_refNum, &ser_settings);
break;

}
handled = 1;
break;

}
return handled;

}

static void StopApplication (void)
{

Err error;
UInt ser_refNum;

error = SysLibFind("Serial Library", &ser_refNum);
error = SerClose(ser_refNum);
FrmCloseAllForms();

}

/***

60

B.1. Software

static void GenEvent (enum events eType, Word controlID)
{

EventType newEvent;

MemSet(&newEvent, sizeof(EventType), 0);
newEvent.eType = eType;
if (controlID != NULL_ID) {

newEvent.data.ctlSelect.controlID = controlID;
}
EvtAddEventToQueue(&newEvent);

}

**/

B.1.2 Myfirst.c
A program to toggle bits in the PalmPilot’s output registers. Shows how to write
directly to the dragon ball registers.

#include "Common.h"
#include "System/SysAll.h"
#include "UI/UIAll.h"

#include "myfirst.h"

#define hwrTD1PortMDockIn 0x80

static void DriveHigh(unsigned char mask, char port);
static void DriveLow(unsigned char mask, char port);
static int StartApplication(void);
static void EventLoop(void);
static void StopApplication(void);
static Boolean myfirstEvtHandler(EventPtr event);

DWord PilotMain (Word cmd, Ptr cmdPBP, Word launchFlags)
{

int error;

if (cmd == sysAppLaunchCmdNormalLaunch) {
error = StartApplication();
if (error) {

return error;
}

EventLoop();
StopApplication();

}
return 0;

}

static int StartApplication (void)
{

FrmGotoForm(formID_myfirst);
}

static void EventLoop(void)
{

short err;
int formID;

61

Chapter B: Appendix Software

FormPtr form;
EventType event;

do {
EvtGetEvent(&event, evtWaitForever);
if (! SysHandleEvent(&event)) {

if (! MenuHandleEvent((void *)0, &event, &err)) {
if (event.eType == frmLoadEvent) {

formID = event.data.frmLoad.formID;
form = FrmInitForm(formID);
FrmSetActiveForm(form);
switch (formID) {
case formID_myfirst:

FrmSetEventHandler(form, (FormEventHandlerPtr) myfirstEvtHandler);
break;

}
}

}
}
FrmDispatchEvent(&event);

} while(event.eType != appStopEvent);
}

static Boolean myfirstEvtHandler(EventPtr event)
{

volatile unsigned char *PMDATA = (unsigned char *)0xfffff449;
volatile unsigned char *PMDIR = (unsigned char *)0xfffff448;
static unsigned char mask;
static char port;
static char high[] = "high";
static char low[] = "low";
FormPtr form;
Boolean handled = 0;
EventType newEvent;

switch (event->eType) {
case frmOpenEvent:

form = FrmGetActiveForm();
FrmDrawForm(form);

/* *PMDIR &= ~hwrTD1PortMDockIn; */
handled = 1;
break;

case ctlSelectEvent:
switch (event->data.ctlSelect.controlID) {
case buttonID_high:

DriveHigh(mask, port);
break;

case buttonID_low:
DriveLow(mask, port);
break;

case checkID_bit0:
mask = 0x01;
break;

case checkID_bit1:
mask = 0x02;
break;

case checkID_bit2:
mask = 0x04;
break;

case checkID_bit3:
mask = 0x08;
break;

62

B.1. Software

case checkID_bit4:
mask = 0x10;
break;

case checkID_bit5:
mask = 0x20;
break;

case checkID_bit6:
mask = 0x40;
break;

case checkID_bit7:
mask = 0x80;
break;

case checkID_portA:
port = ’A’;
break;

case checkID_portB:
port = ’B’;
break;

case checkID_portC:
port = ’C’;
break;

case checkID_portD:
port = ’D’;
break;

case checkID_portE:
port = ’E’;
break;

case checkID_portF:
port = ’F’;
break;

case checkID_portG:
port = ’G’;
break;

case checkID_portJ:
port = ’J’;
break;

case checkID_portK:
port = ’K’;
break;

case checkID_portM:
port = ’M’;
break;

}
handled = 1;
break;

case menuEvent:
switch (event->data.menu.itemID) {
case menuitemID_about:

FrmAlert(alertID_about);
break;

case menuitemID_quit:
MemSet(&newEvent, sizeof(EventType), 0);
newEvent.eType = appStopEvent;
EvtAddEventToQueue(&newEvent);
break;

case menuitemID_poll:
if (*PMDATA & hwrTD1PortMDockIn) {

/* GPIO high */
WinEraseChars(low, StrLen(low), (SWord) 60, (SWord) 20);
WinDrawChars(high, StrLen(high), (SWord) 60, (SWord) 20);

}
else {

63

Chapter B: Appendix Software

/* GPIO low */
WinEraseChars(high, StrLen(high), (SWord) 60, (SWord) 20);
WinDrawChars(low, StrLen(low), (SWord) 60, (SWord) 20);

}
break;

}
handled = 1;
break;

}
return handled;

}

static void StopApplication (void)
{

FrmCloseAllForms();
}

static void DriveHigh(unsigned char mask, char port)
{

#include "dragonball_registers.h"

switch (port) {
case ’A’:

*PASEL |= mask;
*PADIR |= mask;
*PADATA |= mask;
break;

case ’B’:
*PBSEL |= mask;
*PBDIR |= mask;
*PBDATA |= mask;
break;

case ’C’:
*PCSEL |= mask;
*PCDIR |= mask;
*PCDATA |= mask;
break;

case ’D’:
*PDDIR |= mask;
*PDDATA |= mask;
*PDPUEN |= mask;
break;

case ’E’:
*PESEL |= mask;
*PEDIR |= mask;
*PEDATA |= mask;
*PEPUEN |= mask;
break;

case ’F’:
*PFSEL |= mask;
*PFDIR |= mask;
*PFDATA |= mask;
*PFPUEN |= mask;
break;

case ’G’:
*PGSEL |= mask;
*PGDIR |= mask;
*PGDATA |= mask;
*PGPUEN |= mask;
break;

case ’J’:
*PJSEL |= mask;

64

B.1. Software

*PJDIR |= mask;
*PJDATA |= mask;
break;

case ’K’:
*PKSEL |= mask;
*PKDIR |= mask;
*PKDATA |= mask;
*PKPUEN |= mask;
break;

case ’M’:
*PMSEL |= mask;
*PMDIR |= mask;
*PMDATA |= mask;
*PMPUEN |= mask;
break;

}
}

static void DriveLow(unsigned char mask, char port)
{

#include "dragonball_registers.h"

switch (port) {
case ’A’:

*PASEL &= ~mask;
*PADIR &= ~mask;
*PADATA &= ~mask;
break;

case ’B’:
*PBSEL &= ~mask;
*PBDIR &= ~mask;
*PBDATA &= ~mask;
break;

case ’C’:
*PCSEL &= ~mask;
*PCDIR &= ~mask;
*PCDATA &= ~mask;
break;

case ’D’:
*PDDIR &= ~mask;
*PDDATA &= ~mask;
*PDPUEN &= ~mask;
break;

case ’E’:
*PESEL &= ~mask;
*PEDIR &= ~mask;
*PEDATA &= ~mask;
*PEPUEN &= ~mask;
break;

case ’F’:
*PFSEL &= ~mask;
*PFDIR &= ~mask;
*PFDATA &= ~mask;
*PFPUEN &= ~mask;
break;

case ’G’:
/* *PGSEL &= ~mask; */

/* *PGDIR &= ~mask; */
*PGDATA &= ~mask;

/* *PGPUEN &= ~mask; */
break;

65

Chapter B: Appendix Software

case ’J’:
*PJSEL &= ~mask;
*PJDIR &= ~mask;
*PJDATA &= ~mask;
break;

case ’K’:
*PKSEL &= ~mask;
*PKDIR &= ~mask;
*PKDATA &= ~mask;
*PKPUEN &= ~mask;
break;

case ’M’:
*PMSEL &= ~mask;
*PMDIR &= ~mask;
*PMDATA &= ~mask;
*PMPUEN &= ~mask;
break;

}
}

B.1.3 Pilot.asm
Excerpts from the assembler main program and some debugging functions.

;**************************************
; PALM.ASM
;
; PamlKiosk Wireless Network Module
;
; Running on a PIC16C77
;
;**************************************

LIST P=16C77, R=DEC ; do not remove R=DEC

INCLUDE "P16C77.INC"
INCLUDE <PALM.H>
INCLUDE <PALM_COM.H>
INCLUDE <PALM_ERR.H>
INCLUDE <MODULE.H>
INCLUDE <PALM_DOS.ASM>
INCLUDE <PALM_TX.ASM>
INCLUDE <PALM_RX.ASM>

;***** most of these were used within the ISR in an older version *****
ScratchPadRam EQU 0x20
STATUS_TEMP EQU ScratchPadRam+0
PCLATH_TEMP EQU ScratchPadRam+1
FSR_TEMP EQU ScratchPadRam+2
TempPortB EQU ScratchPadRam+3
LastPortB EQU ScratchPadRam+4

CountDown EQU ScratchPadRam+5 ; used in ’Delay’ and send_symb_sync

staid_base EQU ScratchPadRam+6
s0 EQU 38 ; these are for the simulator
s1 EQU 39 ; they can be traced in a watch
s2 EQU 40 ; window

66

B.1. Software

header_base EQU ScratchPadRam+9
h0 EQU 41 ; these are for the simulator
h1 EQU 42 ; they can be traced in a watch
h2 EQU 43 ; window
h3 EQU 44
h4 EQU 45
h5 EQU 46
h6 EQU 47
h7 EQU 48
h8 EQU 49
h9 EQU 50

inter_1_base EQU ScratchPadRam+19
i0 EQU 51 ; these are for the simulator
i1 EQU 52 ; they can be traced in a watch
i2 EQU 53 ; window
i3 EQU 54
i4 EQU 55
i5 EQU 56
i6 EQU 57
i7 EQU 58
i8 EQU 59
i9 EQU 60
i10 EQU 61
i11 EQU 62

inter_2_base EQU ScratchPadRam+31 ; not used yet

last_base EQU ScratchPadRam+43
l0 EQU 75 ; these are for the simulator
l1 EQU 76 ; they can be traced in a watch
l2 EQU 77 ; window
l3 EQU 78
l4 EQU 79
l5 EQU 80
l6 EQU 81
l7 EQU 82

CountUp EQU ScratchPadRam+51

;***** the sixteen locations following this address are visible in all banks *****
ScratchMapped EQU 0x70
NotUsed EQU ScratchMapped+0
SaveWReg EQU ScratchMapped+1
RX0 EQU ScratchMapped+2 ; receive buffers
RX1 EQU ScratchMapped+3
TX0 EQU ScratchMapped+4 ; transmit buffers
TX1 EQU ScratchMapped+5
D0 EQU ScratchMapped+6 ; data buffer
send_inter EQU ScratchMapped+7 ; address of next intermediate

; block to be sent
load_inter EQU ScratchMapped+8 ; address of next buffer to be

; filled with data from the serial link

ORG 0
movlw HIGH Start
movwf PCLATH
GOTO Start

ORG 4
movlw HIGH Interrupt

67

Chapter B: Appendix Software

movwf PCLATH
GOTO Interrupt

ORG 50
;***
;* ISR has nothing to do
;***
Interrupt RETFIE

;***
;* main program
;***
Start

movlw HIGH Init_Ports ; set i/o ports to defaults
movwf PCLATH
CALL Init_Ports

clrf STATUS

movlw HIGH do_init_serial ; init the serial communication
movwf PCLATH
call do_init_serial

movlw #inter_1_base ; move inter_1_buffer’s address to
movwf send_inter ; send_inter
movwf load_inter ; and load_inter (we use only one buffer)

error_cont
main_loop

movlw HIGH main_loop
movwf PCLATH
goto main_loop

;***
;* init all I/O ports
;***
;***** init bank 0 first *****
Init_Ports CLRF STATUS

;***** set ports to defaults *****
CLRF INTCON ; disable all interrupts
MOVLW PORTA_INIT
MOVWF PORTA
MOVLW PORTB_INIT
MOVWF PORTB
MOVWF LastPortB
CLRF PORTC
CLRF PORTD
MOVLW PORTE_INIT
MOVWF PORTE

;***** init bank 1 next *****
BSF STATUS, RP0

;***** set port directions *****
CLRF TRISA
MOVLW PORTB_INOUT
MOVWF TRISB
MOVLW PORTC_INOUT

68

B.1. Software

MOVWF TRISC
CLRF TRISD
CLRF TRISE
MOVLW ADCON1_INIT
MOVWF ADCON1
RETURN

;***
;* set baudrate and enable receiver & transmiter
;***
do_init_serial BSF STATUS, RP0 ; bank 1

MOVLW _38400h
MOVWF SPBRG
BSF TXSTA, BRGH
BCF TXSTA, SYNC
BCF STATUS, RP0 ; bank 0
BSF RCSTA, SPEN
BSF STATUS, RP0 ; bank 1
BSF TXSTA, TXEN
BCF STATUS, RP0 ; bank 0
BSF RCSTA, CREN

RETURN
;***
;* these routines are for debugging purposes
;***
;***** delay n times 100ms -- n in w_reg *****
Delay CLRF STATUS ; bank 0

MOVWF CountDown
_reset_timer1 MOVLW 0x47

MOVWF TMR1L
MOVLW 0x51
MOVWF TMR1H
BCF PIR1, TMR1IF
MOVLW TIMER1_2
MOVWF T1CON

_wait_timer1 movlw HIGH _wait_timer1
movwf PCLATH
BTFSS PIR1, TMR1IF
GOTO _wait_timer1
movlw HIGH _reset_timer1
movwf PCLATH
DECFSZ CountDown, F
GOTO _reset_timer1

RETURN

;***** blink the LEDs once *****
LED_blink MOVWF SaveWReg

SWAPF STATUS, W
CLRF STATUS ; bank 0
MOVWF STATUS_TEMP
BCF PORTE, LED_1
BSF PORTE, LED_2
MOVLW 0x01
movlw HIGH Delay
movwf PCLATH
CALL Delay
CLRF STATUS ; bank 0
BCF PORTE, LED_2
BSF PORTE, LED_1
MOVLW 0x01

69

Chapter B: Appendix Software

movlw HIGH Delay
movwf PCLATH
CALL Delay
SWAPF STATUS_TEMP, W
MOVWF STATUS
SWAPF SaveWReg, F
SWAPF SaveWReg, W

RETURN

error_symb bsf PORTE, LED_1
bcf PORTE, LED_2
movlw HIGH error_symb
movwf PCLATH
goto error_symb

error_transmit_init
bsf PORTE, LED_2
bcf PORTE, LED_1
movlw HIGH error_transmit_init
movwf PCLATH
goto error_transmit_init

error_receive_init
bsf PORTE, LED_2
bcf PORTE, LED_1
movlw HIGH error_receive_init
movwf PCLATH
goto error_receive_init

error_staid bsf PORTE, LED_2
bsf PORTE, LED_1
movlw HIGH error_staid
movwf PCLATH
goto error_staid

error_header bsf PORTE, LED_1
bsf PORTE, LED_2

_err_head bcf PORTE, LED_1
bcf PORTE, LED_2
movlw HIGH _err_head
movwf PCLATH
goto _err_head

error_frame movlw HIGH error_frame
movfw PCLATH
GOTO error_frame

error_inter bsf PORTE, LED_2
bsf PORTE, LED_1
movlw HIGH error_inter
movwf PCLATH
goto error_inter

error_last bsf PORTE, LED_2
bsf PORTE, LED_1
movlw HIGH error_last
movwf PCLATH
goto error_last

;***
;* default data

70

B.1. Software

;***
ORG 0x1E00

pattern_symb addwf PCL, F
nop
retlw 0x5F
retlw 0xF5
retlw 0xF5
retlw 0xF5
retlw 0xF5
retlw 0xF5

pattern_frame addwf PCL, F
nop
retlw 0x1B
retlw 0x5B
retlw 0xF2
retlw 0x49
retlw 0x37
retlw 0x22

END

B.1.4 Palm_dos.asm
Excerpts from palm_dos.asm: functions for talking to the modem and controling the
board.

ORG 0x0800

;***
;* decode command
;***
;***** receive one byte first *****
do_decode_command

movlw HIGH do_receive_one
movwf PCLATH
call do_receive_one

;***** range check *****
movf D0, W
sublw last_command
movlw HIGH do_unknown_cmd
movwf PCLATH
btfss STATUS, C
goto do_unknown_cmd
btfsc STATUS, Z
goto do_unknown_cmd

;***** we got a valid command *****
movlw HIGH 0x0800
movwf PCLATH
movf D0, W
addwf PCL, F
goto do_read_status
goto do_read_quality
goto do_read_data
goto do_poll_cd
goto do_receiver_on

71

Chapter B: Appendix Software

goto do_receiver_off
goto do_transceiver_on
goto do_transceiver_off
goto do_power_on
goto do_power_off
goto do_LED_1_toggle
goto do_LED_2_toggle
goto do_write_command
goto do_write_mode
goto do_write_control
goto do_write_data
goto do_set_staid
goto do_set_header
goto do_set_inter
goto do_set_last
goto do_get_staid
goto do_get_header
goto do_get_inter
goto do_get_last
goto do_transmit_frame
goto do_transmit_header
goto do_transmit_inter
goto do_transmit_last
goto do_receive_frame
goto do_receive_header
goto do_receive_inter
goto do_receive_last
goto do_transceiver_test

;***
;* receive one byte, check for errors
;***
;***** receive one byte *****
do_receive_one

movlw HIGH do_receive_one
movwf PCLATH
BTFSS PIR1, RCIF
GOTO do_receive_one

; DOLATER WATCHDOG

movlw HIGH do_frame_error
movwf PCLATH
BTFSC RCSTA, FERR
GOTO do_frame_error
movlw HIGH do_overrun
movwf PCLATH
MOVLW HIGH do_overrun
MOVWF PCLATH
BTFSC RCSTA, OERR
GOTO do_overrun

MOVF RCREG, W
MOVWF D0

RETLW 0x00

;***
;* transmit one byte, if transmit buffer is empty
;***
;***** transfer buffer empty ? *****
do_transmit_one

72

B.1. Software

movwf D0
_transmit_one_txif

movlw HIGH _transmit_one_txif
movwf PCLATH
BTFSS PIR1, TXIF ; transmit register empty?
GOTO _transmit_one_txif ; no, wait!

; DOLATER WATCHDOG

movf D0, W
movwf TXREG

RETLW 0x00

;***
;* transmit one to two bytes, if transmit buffer is empty
;***
;***** transmit two bytes *****
do_transmit_2

movlw HIGH do_transmit_2
movwf PCLATH
BTFSS PIR1, TXIF ; transmit register empty?
GOTO do_transmit_2 ; no, wait!

; DOLATER WATCHDOG

MOVF TX0, W
MOVWF TXREG

;***** transmit one byte *****
do_transmit_1

movlw HIGH do_transmit_1
movwf PCLATH
BTFSS PIR1, TXIF ; transmit register empty?
GOTO do_transmit_1 ; no, wait!

; DOLATER WATCHDOG

MOVF TX1, W
MOVWF TXREG

retlw 0x00

;***** same as transmit one byte *****
do_transmit_error

movlw HIGH do_transmit_error
movwf PCLATH
BTFSS PIR1, TXIF ; transmit register empty?
GOTO do_transmit_error ; no, wait!

; DOLATER WATCHDOG

MOVF TX1, W
MOVWF TXREG

movlw HIGH error_cont
movwf PCLATH
goto error_cont

;***
;* handle various errors
;***

73

Chapter B: Appendix Software

;***** unknown command error *****
do_unknown_cmd MOVLW unknown_cmd ; send (U)nknown command error

MOVWF TX1
movlw HIGH do_transmit_error
movwf PCLATH
GOTO do_transmit_error

;***** data overrun error *****
do_overrun MOVLW overrun_error ; send (O)verrun error

MOVWF TX1
movlw HIGH _reset_cren
movwf PCLATH
GOTO _reset_cren

;***** framing error *****
do_frame_error MOVLW frame_error ; send (F)rame error

MOVWF TX1
_reset_cren BCF RCSTA, CREN

BSF RCSTA, CREN
movlw HIGH do_transmit_error
movwf PCLATH
GOTO do_transmit_error

;***** indicate error by sending the error flag *****
do_error MOVLW error_indication ; send (E)rror

MOVWF TX1
movlw HIGH do_transmit_error
movwf PCLATH
GOTO do_transmit_error ; transmit both bytes

;***
;* turn on 5V dc-dc convertor
;***
do_power_on

BCF PORTA, SHDN_5V
MOVLW power_on
MOVWF TX1
movlw HIGH do_transmit_1
movwf PCLATH
GOTO do_transmit_1

;***
;* turn off 5V dc-dc convertor
;***
do_power_off

BSF PORTA, SHDN_5V
MOVLW power_off
MOVWF TX1
movlw HIGH do_transmit_1
movwf PCLATH
GOTO do_transmit_1

;***
;* turn on transceiver & OPAMP
;***
do_transceiver_on

BCF PORTB, TXselectN
bsf PORTB, RXselectN
bcf PORTE, SHDN_AMP
MOVLW transceiver_on
MOVWF TX1
movlw HIGH do_transmit_1

74

B.1. Software

movwf PCLATH
GOTO do_transmit_1

;***
;* turn off transceiver & OPAMP
;***
do_transceiver_off

BSF PORTB, TXselectN
bsf PORTB, RXselectN
bsf PORTE, SHDN_AMP
MOVLW transceiver_off
MOVWF TX1
movlw HIGH do_transmit_1
movwf PCLATH
GOTO do_transmit_1

;***
;* turn on receiver
;***
do_receiver_on

BCF PORTB, RXselectN
bsf PORTB, TXselectN
MOVLW receiver_on
MOVWF TX1
movlw HIGH do_transmit_1
movwf PCLATH
GOTO do_transmit_1

;***
;* turn off receiver
;***
do_receiver_off

BSF PORTB, RXselectN
bsf PORTB, TXselectN
MOVLW receiver_off
MOVWF TX1
movlw HIGH do_transmit_1
movwf PCLATH
GOTO do_transmit_1

;***
;* transceiver test
;***
do_transceiver_test

bcf PORTB, RXselectN
bcf PORTB, TXselectN
movlw transceiver_test
movwf TX1
movlw HIGH do_transmit_1
movwf PCLATH
goto do_transmit_1

;***
;* toggle LED 1
;***
do_LED_1_toggle

MOVF PORTE, W
XORLW LED_1_mask
MOVWF PORTE
MOVLW LED_1_toggle
MOVWF TX1
movlw HIGH do_transmit_1

75

Chapter B: Appendix Software

movwf PCLATH
GOTO do_transmit_1

;***
;* toggle LED 2
;***
do_LED_2_toggle

MOVF PORTE, W
XORLW LED_2_mask
MOVWF PORTE
MOVLW LED_2_toggle
MOVWF TX1
movlw HIGH do_transmit_1
movwf PCLATH
GOTO do_transmit_1

;***
;* poll the carrier detect line
;***
do_poll_cd

movlw no_carrier_detect
btfss PORTB, CDN
movlw carrier_detect
movwf TX1
movlw poll_cd
movwf TX0
movlw HIGH do_transmit_2
movwf PCLATH
goto do_transmit_2

;***
;* read modem status register
;***
do_read_status

MOVLW PORTD_IN
BSF STATUS, RP0
MOVWF TRISD
BCF STATUS, RP0
MOVF PORTA, W
IORLW status_or
ANDLW status_and
MOVWF PORTA

MOVF PORTD, W
MOVWF TX1
MOVF PORTA, W
IORLW idle_or
MOVWF PORTA

movlw read_status
movwf TX0
movlw HIGH do_transmit_2
movwf PCLATH
goto do_transmit_2

;***
;* write modem command register
;***
do_write_command

movlw HIGH do_receive_one
movwf PCLATH

76

B.1. Software

call do_receive_one
MOVF PORTA, W
IORLW command_or
ANDLW command_and
MOVWF PORTA

MOVF D0, W
MOVWF PORTD
MOVLW PORTD_OUT
BSF STATUS, RP0
MOVWF TRISD
BCF STATUS, RP0

MOVF PORTA, W
IORLW idle_or
MOVWF PORTA

movlw write_command
movwf TX1
movlw HIGH do_transmit_1
movwf PCLATH
goto do_transmit_1

;***
;* set the station id
;***
do_set_staid

movlw set_staid
movwf TX1
movlw HIGH do_transmit_1
movwf PCLATH
call do_transmit_1

movlw 0x03
movwf CountDown
movlw #staid_base
movwf FSR

_staid_set_count
movlw HIGH do_receive_one
movwf PCLATH
call do_receive_one
movwf INDF
incf FSR, F
movlw HIGH _staid_set_count
movwf PCLATH
decfsz CountDown, F
goto _staid_set_count

movlw set_staid
movwf TX1
movlw HIGH do_transmit_1
movwf PCLATH
goto do_transmit_1

;***
;* set iblock
;***
do_set_inter

movlw set_inter
movwf TX1

77

Chapter B: Appendix Software

movlw HIGH do_transmit_1
movwf PCLATH
call do_transmit_1

movlw 0x0C
movwf CountDown
movf load_inter, W
movwf FSR

_inter_set_count
movlw HIGH do_receive_one
movwf PCLATH
call do_receive_one
movwf INDF
incf FSR, F
movlw HIGH _inter_set_count
movwf PCLATH
decfsz CountDown, F
goto _inter_set_count

movlw set_inter
movwf TX1
movlw HIGH do_transmit_1
movwf PCLATH
goto do_transmit_1

;***
;* get iblock
;***
do_get_inter

movlw HIGH do_transmit_one
movwf PCLATH
movlw get_inter
call do_transmit_one

movlw 0x0C
movwf CountDown
movf load_inter, W
movwf FSR

_inter_get_count
movlw HIGH do_transmit_one
movwf PCLATH
movf INDF, W
call do_transmit_one
incf FSR, F
movlw HIGH _inter_get_count
movwf PCLATH
decfsz CountDown, F
goto _inter_get_count

RETLW 0x00

;***
;* get staid
;***
do_get_staid

movlw HIGH do_transmit_one
movwf PCLATH
movlw get_staid
call do_transmit_one

movlw 0x03

78

B.1. Software

movwf CountDown
movlw #staid_base
movwf FSR

_staid_get_count
movlw HIGH do_transmit_one
movwf PCLATH
movf INDF, W
call do_transmit_one
incf FSR, F
movlw HIGH _staid_get_count
movwf PCLATH
decfsz CountDown, F
goto _staid_get_count

RETLW 0x00

;***
;* transmit frame
;***
do_transmit_frame

movlw HIGH do_transmit_init
movwf PCLATH
call do_transmit_init

movlw HIGH do_send_frame_one
movwf PCLATH
call do_send_frame_one
movwf D0
movlw HIGH do_error
movwf PCLATH
btfsc D0, 0
goto do_error
movlw HIGH do_transmit_one
movwf PCLATH
movlw transmit_frame
call do_transmit_one

RETLW 0x00

;***
;* receive frame
;***
do_receive_frame

RETLW 0x00

B.1.5 Palm_tx.asm
Excerpts from palm_tx.asm: functions for sending blocks.

ORG 0x1000

;***
;* init the modem for transmiting
;***
do_transmit_init

clrf STATUS
movlw ctrl_reg_transmit
movwf D0
movlw HIGH do_write_control_private

79

Chapter B: Appendix Software

movwf PCLATH
call do_write_control_private

movlw mode_reg_transmit
movwf D0
movlw HIGH do_write_mode_private
movwf PCLATH
call do_write_mode_private

movlw RESET
movwf D0
movlw HIGH do_write_command_private
movwf PCLATH
call do_write_command_private

movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private
movlw HIGH error_transmit_init
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_transmit_init ; error BFREE not set
movlw (mode_reg_transmit | IRQNEN)
movwf D0
movlw HIGH do_write_mode_private
movwf PCLATH
call do_write_mode_private

RETURN
;***
;* send frame, containing one iblock
;***
do_send_frame_one

movlw HIGH do_send_symb_sync
movwf PCLATH
call do_send_symb_sync

wait_symb_irq
movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private

movlw HIGH wait_symb_irq
movwf PCLATH
movf D0, W
andlw IRQ
btfsc STATUS, Z
goto wait_symb_irq ; IRQ not set

movlw HIGH error_symb
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_symb ; BFREE not set

movlw HIGH error_symb
movwf PCLATH
movf D0, W
andlw IBEMPTY

80

B.1. Software

btfss STATUS, Z
goto error_symb ; IBEMPTY not clear

movlw HIGH do_send_frame_sync
movwf PCLATH
call do_send_frame_sync

wait_frame_irq
movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private

movlw HIGH wait_frame_irq
movwf PCLATH
movf D0, W
andlw IRQ
btfsc STATUS, Z
goto wait_frame_irq ; IRQ not set

movlw HIGH error_frame
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_frame ; BFREE not set

movlw HIGH error_frame
movwf PCLATH
movf D0, W
andlw IBEMPTY
btfss STATUS, Z
goto error_frame ; IBEMPTY not clear

movlw HIGH do_send_staid
movwf PCLATH
call do_send_staid

wait_staid_irq
movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private

movlw HIGH wait_staid_irq
movwf PCLATH
movf D0, W
andlw IRQ
btfsc STATUS, Z
goto wait_staid_irq ; IRQ not set

movlw HIGH error_staid
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_staid ; BFREE not set

movlw HIGH error_staid
movwf PCLATH
movf D0, W
andlw IBEMPTY
btfss STATUS, Z
goto error_staid ; IBEMPTY not clear

81

Chapter B: Appendix Software

movlw HIGH do_send_header
movwf PCLATH
call do_send_header

wait_header_irq
movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private

movlw HIGH wait_header_irq
movwf PCLATH
movf D0, W
andlw IRQ
btfsc STATUS, Z
goto wait_header_irq ; IRQ not set

movlw HIGH error_header
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_header ; BFREE not set

movlw HIGH error_header
movwf PCLATH
movf D0, W
andlw IBEMPTY
btfss STATUS, Z
goto error_header ; IBEMPTY not clear

movlw HIGH do_send_inter
movwf PCLATH
call do_send_inter

wait_inter_irq
movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private

movlw HIGH wait_inter_irq
movwf PCLATH
movf D0, W
andlw IRQ
btfsc STATUS, Z
goto wait_inter_irq ; IRQ not set

movlw HIGH error_inter
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_inter ; BFREE not set

movlw HIGH error_inter
movwf PCLATH
movf D0, W
andlw IBEMPTY
btfss STATUS, Z
goto error_inter ; IBEMPTY not clear

movlw HIGH do_send_last

82

B.1. Software

movwf PCLATH
call do_send_last

wait_last_irq
movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private

movlw HIGH wait_last_irq
movwf PCLATH
movf D0, W
andlw IRQ
btfsc STATUS, Z
goto wait_last_irq ; IRQ not set

movlw HIGH error_last
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_last ; BFREE not set

movlw HIGH error_last
movwf PCLATH
movf D0, W
andlw IBEMPTY
btfss STATUS, Z
NOP
RETLW 0x00

;***
;* send symbol syncing pattern
;***
do_send_symb_sync

movlw 0x06
movwf CountDown

_symb_count
movlw HIGH pattern_symb
movwf PCLATH
movf CountDown, W
call pattern_symb
movwf D0
movlw HIGH do_write_data_private
movwf PCLATH
call do_write_data_private
movlw HIGH _symb_count
movwf PCLATH
decfsz CountDown, F
goto _symb_count
movlw T24S
movwf D0
movlw HIGH do_write_command_private
movwf PCLATH
call do_write_command_private

RETLW 0x00

;***
;* send last block
;***

83

Chapter B: Appendix Software

do_send_last
movlw 0x08
movwf CountDown
movlw #last_base
movwf FSR

_last_count
movf INDF, W
movwf D0
incf FSR, F
movlw HIGH do_write_data_private
movwf PCLATH
call do_write_data_private
movlw HIGH _last_count
movwf PCLATH
decfsz CountDown, F
goto _last_count
movlw TLB
movwf D0
movlw HIGH do_write_command_private
movwf PCLATH
call do_write_command_private

RETLW 0x00

do_transmit_staid RETURN
do_transmit_header RETURN
do_transmit_inter RETURN
do_transmit_last RETURN
do_receive_staid RETURN
do_receive_header RETURN
do_receive_inter RETURN
do_receive_last RETURN

B.1.6 Palm_rx.asm
Excerpts from palm_rx.asm: functions for reading blocks.

ORG 1800

;***
;* init the modem for receiving
;***
do_receive_init

clrf STATUS
movlw (ctrl_reg_receive)
movwf D0
movlw HIGH do_write_control_private
movwf PCLATH
call do_write_control_private

movlw mode_reg_receive
movwf D0
movlw HIGH do_write_mode_private
movwf PCLATH
call do_write_mode_private

movlw RESET
movwf D0
movlw HIGH do_write_command_private

84

B.1. Software

movwf PCLATH
call do_write_command_private

movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private
movlw HIGH error_receive_init
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_receive_init ; error BFREE not set

RETURN

;***
;* search for frame pattern and read station id
;***
do_read_staid

movlw (mode_reg_receive | IRQNEN)
movwf D0
movlw HIGH do_write_mode_private
movwf PCLATH
call do_write_mode_private

movlw HIGH do_write_command_private
movwf PCLATH
movlw (SFP | AQLEV | AQSC)
movwf D0
call do_write_command_private

wait_sfp_irq
movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private
movlw HIGH wait_sfp_irq
movwf PCLATH
movf D0, W
andlw IRQ
btfsc STATUS, Z
goto wait_sfp_irq ; IRQ not set

movlw HIGH error_staid
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_staid ; BFREE not set

movlw HIGH error_symb
movwf PCLATH
movf D0, W
andlw DIBOVF
btfss STATUS, Z
goto error_symb ; DIBOVF not clear

movlw HIGH error_symb
movwf PCLATH
movf D0, W
andlw CRCERR
btfss STATUS, Z
goto error_symb ; CRCERR not clear

85

Chapter B: Appendix Software

movlw 0x03
movwf CountDown
movlw #staid_base
movwf FSR

_staid_read_count
movlw HIGH do_read_data_private
movwf PCLATH
call do_read_data_private
movf D0, W
movwf INDF
incf FSR, F
movlw HIGH _staid_read_count
movwf PCLATH
decfsz CountDown, F
goto _staid_read_count

RETLW 0x00

;***
;* search frame sync; do not check crc; decode staid
;***
do_search_frame

movlw (mode_reg_receive | IRQNEN)
movwf D0
movlw HIGH do_write_mode_private
movwf PCLATH
call do_write_mode_private

movlw HIGH do_write_command_private
movwf PCLATH

;**

movlw SFS

;**

movwf D0
call do_write_command_private

wait_sfs_irq
movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private
movlw HIGH wait_sfs_irq
movwf PCLATH
movf D0, W
andlw IRQ
btfsc STATUS, Z
goto wait_sfs_irq ; IRQ not set

movlw HIGH error_staid
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_staid ; BFREE not set

movlw HIGH do_write_command_private
movwf PCLATH

86

B.1. Software

;**

movlw RSID

;**

movwf D0
call do_write_command_private

wait_rsid_irq
movlw HIGH do_read_status_private
movwf PCLATH
call do_read_status_private
movlw HIGH wait_rsid_irq
movwf PCLATH
movf D0, W
andlw IRQ
btfsc STATUS, Z
goto wait_rsid_irq ; IRQ not set

movlw HIGH error_staid
movwf PCLATH
movf D0, W
andlw BFREE
btfsc STATUS, Z
goto error_staid ; BFREE not set

movlw 0x03
movwf CountDown
movlw #staid_base
movwf FSR

_staid_read_count1
movlw HIGH do_read_data_private
movwf PCLATH
call do_read_data_private
movf D0, W
movwf INDF
incf FSR, F
movlw HIGH _staid_read_count1
movwf PCLATH
decfsz CountDown, F
goto _staid_read_count1

RETLW 0x00

B.1.7 Palm.h
Definitions and init values used in the assembler main program.

;**************************************
; PALM.H
; Running on a PIC16C77
;**************************************

;***
; port data directions settings 0=OUT 1=IN
;***

;***** --PORTA-- *****

87

Chapter B: Appendix Software

; RA7&RA6 not used, CSN=1, SHDN_5V=1, A1=0, A0=0, RDN=0, WRN=0

#DEFINE PORTA_INIT B’00110000’
#DEFINE PORTA_INOUT B’00000000’
#DEFINE SHDN_5V 4

; mask address, csn, rdn, wrn without affecting shdn_5V
#DEFINE command_or 0x06
#DEFINE command_and 0xD6
#DEFINE control_or 0x0A
#DEFINE control_and 0xDA
#DEFINE mode_or 0x0E
#DEFINE mode_and 0xDE
#DEFINE write_or 0x02
#DEFINE write_and 0xD2
#DEFINE status_or 0x05
#DEFINE status_and 0xD5
#DEFINE quality_or 0x09
#DEFINE quality_and 0xD9
#DEFINE read_or 0x01
#DEFINE read_and 0xD1
#DEFINE idle_or 0x23

;***** --PORTB-- *****
; RB7=0, RB6=0, RTS=0, IRQN=0, RXD=0, TXselectN=1, RXselectN=1, CDN=0

#DEFINE PORTB_INIT B’00000110’
#DEFINE PORTB_INOUT B’11111001’
#DEFINE RXselectN 1
#DEFINE TXselectN 2
#DEFINE RTS 5
#DEFINE IRQN 4
#DEFINE CDN 0

; interrupt on change pins
#DEFINE RB5 5 ; RTS
#DEFINE RB4 4 ; IRQN

;***** --PORTC-- *****
; RX=0, TX=0, CTS=0, EN_N=0, INVALIDN=0, RI=0, DSR=0, CD=0

#DEFINE PORTC_INIT B’00000000’
#DEFINE PORTC_INOUT B’10001000’
#DEFINE CTS 5
#DEFINE RI 2
#DEFINE DSR 1
#DEFINE CD 0

;***** --PORTD-- *****
; D0-D7

#DEFINE PORTD_INIT B’00000000’
#DEFINE PORTD_IN B’11111111’
#DEFINE PORTD_OUT B’00000000’

;***** --PORTE-- *****
; RE2 - RE0: Amplifier off, LED_2 off, LED_1 off

#DEFINE PORTE_INIT B’00000000’
#DEFINE PORTE_INOUT B’00000000’

#DEFINE LED_1 0

88

B.1. Software

#DEFINE LED_2 1
#DEFINE LED_1_mask 0x01
#DEFINE LED_2_mask 0x02
#DEFINE SHDN_AMP 2

;ADCON1 register init values - all multiplexed AD pins off
#DEFINE ADCON1_INIT B’00000111’

; USART baudrate settings
#DEFINE _115200h 1 ; does not work
#DEFINE _57600h 3 ; does not work
#DEFINE _38400h 5
#DEFINE _19200h 11 ; does not work
#DEFINE _9600h 22

; Internal Clock, enable, prescaler
#DEFINE TIMER1_8 B’00110001’
#DEFINE TIMER1_4 B’00100001’
#DEFINE TIMER1_2 B’00010001’
#DEFINE TIMER1_1 B’00000001’

B.1.8 Module.h
Definitions and init values used to talk to the modemchip.

;/***
; * module.h
; ***/

;/* register inital values in transmit mode */
#define ctrl_reg_transmit 0x40
#define mode_reg_transmit 0x20

;/* register inital values in receive mode */
#define ctrl_reg_receive 0x66
#define mode_reg_receive 0x00

;/* special byte streams */
#define symb_pat "\xF5\xF5\xF5\xF5\xF5\x5F" ; not used in the
#define frame_pat "\x22\x37\x49\xF2\x5B\x1B" ; asm version

;/* some prototypes */
#define task_proto 0x20

;/* status register bits */
#define IRQ 0x80
#define BFREE 0x40
#define IBEMPTY 0x20
#define DIBOVF 0x10
#define CRCERR 0x08
#define SRDY 0x04
#define SVAL 0x03

;/* mode register bits */
#define IRQNEN 0x80
#define INVSYM 0x40
#define TXRXN 0x20
#define RXEYE 0x10
#define PSAVE 0x08

89

Chapter B: Appendix Software

#define SSIEN 0x04
#define SSYM 0x03

;/* control register bits */
#define CKDIV 0xC0
#define FSTOL 0x30
#define LEVRES 0x0C
#define PLLBW 0x03

;/* command register bits */
#define AQSC 0x80
#define AQLEV 0x40
#define CRC 0x20
#define TXIMP 0x10
#define reserved 0x08
#define TASK 0x07

;/* receive mode tasks */
#define NULLTASK 0x20
#define SFP 0x21
#define RHB 0x22
#define RILB 0x23
#define SFS 0x24
#define R4S 0x25
#define RSID 0x26
#define RESET 0x27

;/* transmit mode tasks */
;/* NULL & RESET already defined */
#define T24S 0x21
#define THB 0x22
#define TIB 0x23
#define TLB 0x24
#define T4S 0x25
#define TSID 0x26

B.1.9 palm_com.h
Commands used to talk to the module.

;************************************
; PalmKiosk Modem Commands
;************************************

#define read_status 0x00
#define read_quality 0x01
#define read_data 0x02
#define poll_cd 0x03
#define receiver_on 0x04
#define receiver_off 0x05
#define transceiver_on 0x06
#define transceiver_off 0x07
#define power_on 0x08
#define power_off 0x09
#define LED_1_toggle 0x0A
#define LED_2_toggle 0x0B
#define write_command 0x0C
#define write_mode 0x0D
#define write_control 0x0E

90

B.1. Software

#define write_data 0x0F
#define set_staid 0x10
#define set_header 0x11
#define set_inter 0x12
#define set_last 0x13
#define get_staid 0x14
#define get_header 0x15
#define get_inter 0x16
#define get_last 0x17
#define transmit_frame 0x18
#define transmit_header 0x19
#define transmit_inter 0x1A
#define transmit_last 0x1B
#define receive_frame 0x1C
#define receive_header 0x1D
#define receive_inter 0x1E
#define receive_last 0x1F
#define transceiver_test 0x20
#define last_command 0x21

#define dummy_data 0xDD
#define carrier_detect 0x43
#define no_carrier_detect 0x4E

B.1.10 palm_err.h
Definitions to report various error conditions.

/**************************************
* PALM_ERR.H
**************************************/

/* module return codes */
#define error_indication 0x45
#define frame_error 0x46
#define overrun_error 0x4F
#define unknown_cmd 0x55
#define checksum_error 0x43

/* mod_cmd, mod_read, mod_write return codes */
#define EISBLOCKED -2
#define EINITSERIAL -3
#define EFAILED -1

B.1.11 mod_com.c
The SUN’s side communication interface for our first program version. Shows how
to open the serial port and set the modem control lines.

#include <termios.h>
#include <curses.h>
#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

91

Chapter B: Appendix Software

#include <errno.h>
#include <sys/time.h>

#include "palm_com.h"
#include "palm_err.h"

static int serial_fd;
static int init_done = 0;

int mod_cmd(unsigned char c)
{

int i = 0;
unsigned char buf;
int high = TIOCM_RTS;

if (!init_done) {
return(EINITSERIAL);

}

do_it_again:
if (ioctl(serial_fd, TIOCMBIC, &high)){

return(EINITSERIAL);
}
if (write(serial_fd, &c, 1) == 0) {

return(EINITSERIAL);
}
if (ioctl(serial_fd, TIOCMBIS, &high)){

return(EINITSERIAL);
}
if (read(serial_fd, &buf, 1) != 1) {

return(EISBLOCKED);
}
if (buf == c) {

return(0);
}
else if((buf == frame_error) || (buf == overrun_error)){

if (i < 5) {
i++;
if (tcflush(serial_fd, TCIOFLUSH)){

return(EINITSERIAL);
}
goto do_it_again;

}
return(EINITSERIAL);

}
return(EFAILED);

}

int mod_read(unsigned char c, unsigned char *r)
{

int i = 0;
unsigned char buf;
int high = TIOCM_RTS;

if (!init_done) {
return(EINITSERIAL);

}

do_it_again:
if (ioctl(serial_fd, TIOCMBIC, &high)){

return(EINITSERIAL);

92

B.1. Software

}
if (write(serial_fd, &c, 1) == 0) {

return(EINITSERIAL);
}
if (ioctl(serial_fd, TIOCMBIS, &high)){

return(EINITSERIAL);
}
if (read(serial_fd, &buf, 1) != 1) {

return(EISBLOCKED);
}
if (buf == c) {

if (read(serial_fd, r, 1) != 1) {
return(EISBLOCKED);

}
return(0);

}
else if((buf == frame_error) || (buf == overrun_error)){

if (i < 5) {
i++;
if (tcflush(serial_fd, TCIOFLUSH)){

return(EINITSERIAL);
}
goto do_it_again;

}
return(EINITSERIAL);

}
return(EFAILED);

}

int mod_write(unsigned char c, unsigned char v)
{

int i = 0;
unsigned char buf;
int high = TIOCM_RTS;

if (!init_done) {
return(EINITSERIAL);

}

do_it_again:
if (ioctl(serial_fd, TIOCMBIC, &high)){

return(EINITSERIAL);
}
if (write(serial_fd, &c, 1) == 0) {

return(EINITSERIAL);
}
if (write(serial_fd, &v, 1) == 0) {

return(EINITSERIAL);
}
if (ioctl(serial_fd, TIOCMBIS, &high)){

return(EINITSERIAL);
}
if (read(serial_fd, &buf, 1) != 1) {

return(EISBLOCKED);
}
if (buf == c) {

return(0);
}
else if((buf == frame_error) || (buf == overrun_error)){

if (i < 5) {
i++;
if (tcflush(serial_fd, TCIOFLUSH)){

93

Chapter B: Appendix Software

return(EINITSERIAL);
}
goto do_it_again;

}
return(EINITSERIAL);

}
return(EFAILED);

}

int open_port(char *devname)
{

serial_fd = open(devname, O_RDWR | O_NOCTTY);
if (serial_fd == -1)

{
printf("open_port: unable to open %s - %s\n", devname, strerror(errno));
return(-1);

}
return(0);

}

int set_serial_options (void)
{

struct termios options;

if (tcgetattr(serial_fd, &options)){
printf("set_serial_options: unable to get options - %s\n", strerror(errno));
return(-1);

}
options.c_cc[VTIME] = 1;
options.c_cc[VMIN] = 0;
cfsetispeed(&options, B38400);
cfsetospeed(&options, B38400);
options.c_cflag |= CLOCAL;
options.c_cflag |= CREAD;
options.c_cflag &= ~PARENB;
options.c_cflag &= ~CSTOPB;
options.c_cflag |= CS8;
options.c_lflag &= ~ICANON;
options.c_lflag &= ~ECHO;
options.c_oflag &= ~OPOST;
if (tcsetattr(serial_fd, TCSAFLUSH, &options)) {

printf("set_serial_options: unable to set options - %s\n", strerror(errno));
return(-1);

}
return(0);

}

int serial_init(void)
{

if (open_port("/dev/ttya")) {
return(-1);

}
printf("port /dev/ttya opened - fd = %d\n", serial_fd);
if (set_serial_options()) {

printf("serial_init: unable to set serial options - %s\n", strerror(errno));
return(-1);

}
else {

printf("serial_init: serial options set\n");
}
if (tcflush(serial_fd, TCIOFLUSH)){

printf("serial_init: unable to flush queue - %s\n", strerror(errno));

94

B.1. Software

return(-1);
}
init_done = -1;
return(0);

}

95

Chapter B: Appendix Software

96

Bibliography

[1] Ocilawn Corp. Spread spectrum Technology, 1997.
http://www.ocilawn.com/website9.htm

[2] Ocilawn Corp. Radio Propagation, 1997. http://www.ocilawn.com/websiteB.htm

[3] My T. Le, Frederick L. Burghardt, Srinivasan Seshan, Jan Rabaey. InfoNet: the
Networking Infrastructure of InfoPad, Proceedings of Compcon, 1995.

[4] Frederick L. Burghardt. Architecture and Implementation of the InfoPad Net-
work Prototype, University of California at Berkeley, 1994.

[5] K. Keeton, B. Mah, S. Seshan, R. Katz, D. Ferrari. Providing Connection-
Oriented Network Services to Mobile Hosts, Proceedings of the USENIX Sym-
posium on Mobile and Location-Independent Computing, 1993.

[6] E. Amir, H Balakrishnan, S. Seshan, R. Katz. Efficient TCP over Networks with
Wireless Links, University of California at Berkeley, 1994.

[7] M. Le, S. Seshan, F. Burghardt, J. Rabaey. Software Architecture of the InfoPad
System, Proceedings of the Mobidata Workshop on Mobile and Wireless Infor-
mation Systems, 1994.

[8] Frederick L. Burghardt. Protocols for a Multimedia System: Investigation into
Transport Mechanisms for the InfoPad Network Prototype, University of Cali-
fornia at Berkeley, 1994.

[9] Heinz Jäkel. Skript Elektronik I, Institut für Elektronik, ETHZ, 1995.

[10] Heinz Jäkel. Skript Elektronik II, Institut für Elektronik, ETHZ, 1996.

[11] Hubert Käslin. VLSI I, Lecture notes on very large scale integration circuits,
Microelectronic Design Center, ETHZ, 1997.

[12] W. Fichtner. Skript Elektronische Systeme, Institut für Integrierte Systeme,
ETHZ, 1996.

[13] Motorola Inc. Integrated Portable System Processor – DragonBall MC68328.
1995. http://www.mot.com/SPS/ADC/pps/prod/3XX/mc68328.html

97

Bibliography

[14] Leo Breuss. PalmKiosk II, Drahtloses lokales Netzwerk für PalmtopComputer,
Institut für Elektronik, ETHZ, 1998.

[15] Thomas Schult. Neue Beweglichkeit, Reisebüro, Kontaktsuche. C’T Magazin,
Heise Verlag, pages 138-159, 15/1997.

[16] H. Alkhatib et al. Wireless Data Networks: Reaching th eExtra Mile. IEEE Com-
puter Magazine, pages 59-62, Jan. 1998.

[17] Motorola Corp. Advanced Microcontroller Division 1996 Device Selection Guide,
4th quarter, 1996.

[18] T. Oetiker. The not so short introduction to LATEX 2", 1997.

[19] 3Com Corporation. PalmPilot Hardware Development Kit, 1997.

[20] 3Com Corporation. PalmPilot Connected Organizer White Paper, 1997.
http://palmpilot.3com.com/products/whitepp.pdf.

[21] D. Karnigan. Fortune Magazine, November 10, 1997, 1997.
http://pathfinder.com/fortune/1997/971110/ten3.html.

[22] Richard S. Shim. Computer Shopper, December 1997, 1997.
http://www.zdnet.com/cshopper/content/9712/cshp0173.html.

[23] CML Semiconductors Ltd. 4-Level FSK Modem Data Pump FX929B, 1997.
http://www.cmlmicro.co.uk.

[24] T.Imielinski and H. Korth. Mobile Computing. Kluwer Academic Publishers,
1996.

[25] Linear Technology Corp. LTC 1514-3.3 DC/DC Converters, 1997.

[26] Linear Technology Corp. LTC 1516 DC/DC Converters, 1997.

[27] Maxim Integrated Product. MAX3223 RS-232 Transceiver with Autoshutdown,
1997. http://www.maxim.com.

[28] Microchip Technology Inc. Application Note 555,Software Implementation of
Asynchronous Serial IO, 1997. http://www.microchip.com.

[29] Microchip Technology Inc. 8-Bit Microcontrollers, 1997.

[30] Microchip Technology Inc. PIC16C7X Data Sheet, 1997.

[31] Radiometrix Ltd. Low Power UHF Data Transceiver Module, 1997.

[32] Radiometrix Ltd. Radio Packet Controller, 1997.
http://www.radiometrix.com/products/rpc/rpcsheep.html.

[33] Radiometrix Ltd.Data Sheet. BIM Evaluation Kit, 1997.

98

Bibliography

[34] Radiometrix Ltd.Data Sheet. Use of Radiometrix BIM Transceiver, 1997.

[35] Radiometrix Ltd.Data Sheet. Use of Radiometrix Radio Modules, 1997.

[36] Radiometrix Ltd.Data Sheet. FCC Power Limits, 1997.

[37] Radiometrix Ltd.Data Sheet. Type Approvals, 1997.

[38] Radiometrix Ltd. EMC Requirements, 1997.

[39] Scenix Semiconductor Inc. SCX18/SCX28 8-Bit In-System Programmable Mi-
crocontroller, 1997. http://www.scenix.com.

[40] S. Paramananthan, Radiometrix Ltd. Application Note 100,
Error Performance of BIM Transceiver with RPC, 1997.
http://www.radiometrix.co.uk/apps/apnt100.htm.

[41] S. Paramananthan, Radiometrix Ltd. Application Note 101, Er-
ror Performance of BIM Transceiver with RS232 Interface, 1997.
http://www.radiometrix.co.uk/apps/apnt101.htm.

99

